
HP 9000 Series 300/800 Computers

A Beginner's Guide to HP-UX

Fli;- HEWLETT
~a PACKARD

FILE AND DIRECTORY COMMANDS

To Do This ... Use This Command . ..

Create a file named file. cat> file

Set protection for specified file. chmod nnn file

Set protection for specified directory. chmod nnn dir

Copy jromfile to tofile. cp jromfile tofile

Copy file jrompath to directory specified by topath. cp jrompath topath

Print specified file on printer. Ip file

List file names. Is

List file names, including invisible file names. Is -a

List file names and append a slash U) to directory names. Isf

Create a new directory named dir. mkdir dir

Display contents of file on the screen. more file

Rename file old to new. mv old new

Move file jrompath to directory to specified by topath. mv jrompath topath

Display absolute pathname of current directory. pwd

Remove (delete) file. rm file

Remove directory named dir. rmdir dir

A Beginner's Guide to HP-UX
HP 9000 Series 300/800 Computers

) .

HP Part Number 98594-90006

r/i~ HEWLETT
a:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Copyright © 1987, 1988, 1989, Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S.
Government Department of Defense is subject to restrictions as set forth in
paragraph (b)(3)(ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Copyright © 1980, 84, 86, AT&T Technologies, Inc.

UNIX and System V are registered trademarks of AT&T in the USA and other
countries.

Copyright © 1979, 80, 83, 85-88, Regents of the University of California

This software is based in part on the F~urth Berkeley Software Distribution
under license from the Regents of the University of California.

Printing History
The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may be
made at reprint without changing the printing date. The manual part number
will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive the updates or new editions, you
should subscribe to the appropriate product support service. See your HP sales
representative for details.

October 1987 ... Edition 1.

March 1988 ... Edition 2. Minor rewrite and bug fixes. Also now supports
Series 800 HP-UX.

December 1988 ... Edition 3. Add security information.

September 1989 ... Edition 4. Add information on the elm mailer and
additional task information.

iii

Contents

1. Introduction
Tips for Using This Guide 1-2

What Is a "System Administrator"? 1-2
Conventions 1-3

A Brief Word About PAM (The Personal Applications Manager) 1-4

2. Getting Started: Your First Work Session
Logging In 2-2
Typing Commands 2-4

The Command Line Prompt 2-4
Running Commands. . . . 2-4
A Brief Word About the Shell 2-5

Setting Your Password. 2-6
Choosing aNew Password . . 2-6
Running the passwd Command 2-7

Logging Out 2-8

3. Working with Files
Creating and Listing Files 3-2

Creating a File with cat 3-2
Listing Files 3-3

Naming Files 3-4
Choosing a File Name 3-4
Invisible File Names. 3-5

Viewing and Printing Files 3-6
Viewing a File with more 3-6
Printing a File with lp . . 3-7

Contents-1

Renaming, Copying, and Removing Files. 3-8
Renaming Files, with mv 3-8
Copying Files with cp 3-9
Removing (Deleting) Files with rm . . 3-9
If You Don't Have Permission to Access Files. 3-9

Finding Out Who Can Use Your Files 3-10
Using the 11 Command to Display File Permissions 3-10

4. Organizing Your Files: Directories
What is a Directory Hierarchy? 4-2
Determining Your Position in the HP-UX Directory Hierarchy 4-4
Specifying Files and Directories: Absolute Path Names 4-6
Specifying Files and Directories: Relative Path Names 4-8
Creating Directories 4-10
Changing Your Current Directory. 4-12
Moving and Copying Files between Directories 4-14

Moving Files 4-14
Copying Files. 4-15
A Caution about Moving and Copying Files 4-15

Removing Empty Directories 4-16
File Name Shorthand (Wildcard Characters) 4-18

The * Wildcard. 4-18
The? Wildcard 4-18
Using Wildcard Characters with mv, cp, and rm 4-19

Finding Out Who Can Use Your Directories . . . 4-20
Using the 11 Command to Display Directory Permissions 4-22

5. Command Syntax and On-Line Help
Understanding Command Syntax 5-2

Enclosing Arguments in Apostrophes 5-3
Running Multiple Commands on the Same Command Line 5-3

Accessing On-Line Command Help: man-pages 5-4

6. How the Shell Interprets Commands
How the Shell Interacts With Processes 6-2

How to Create a Process . . . 6-2
What Are Process Identifiers? 6-3

Contents-2

Overview: Understanding Standard Input, Standard Output, and
Standard Error 6-4

Examples Using the Standard Files 6-5
Writing Standard Output to a File 6-6

Redirecting Standard Output. 6-6
Appending Output to a File . . 6-7

Using Files for Standard Input . . 6-8
Writing Both Standard Input and Standard Output to Files 6-10
Writing Standard Error to a File 6-12
Redirecting Both Standard Error and Standard Output . . 6-14
Using the Output of One Command as Input to Another: Pipes 6-16

Using the tee Command with Pipes 6-17

7. Sending and Receiving Mail
Getting Started with the Elm Mailer 7-2

Leaving Elm 7-3
Sending Mail to Other Users on Your System . 7-4

Sending a Message to Multiple Recipients 7-5
Reading Your Mail 7-6

Displaying Message Headers 7-7
Sending Mail to Users on Other Systems 7-8

Node Names 7-8
Mail Syntax when Mailing to Other Systems 7-9
Some Example Mail Addresses 7-9

Deleting Mail Messages 7-10
Saving a Mail Message to a File. 7-12

Viewing the Contents of Saved Messages 7-12
Customizing Elm 7-14

Bringing Up the Option Menu 7-14
Changing the Order of Your Mail Messages 7-15

A Summary of Useful Mail Commands 7-16

Contents-3

8. Keeping Your System Secure
Security Strategies
Securing Your Terminal

Guidelines for Securing Your Terminal
Working in an Audited Environment

Choosing a Secure Password
Protecting Your Files and Directories .

Access to Sensitive Files
Listing Permissions with the 11 Command

Changing Who Has Access to Files
Using chmod to Set File Permissions

Common Ways to Use chmod to Protect Files
Changing Who Has Access to Directories
Finding Out Default Access Permissions

9. Other Common HP-UX Tasks
Saving Files on Tape Using cpio and tcio .

Creating a Tape Archive
Example of Creating a Tape Archive
Selectively Saving Files to Tape. . .
Listing Files on Tape

Retrieving Files from Tape Using cpio and tcio
Retrieving All Files from Tape
Example of Retrieving Files from Tape
Selectively Retrieving Files from Tape

Getting Information About Print Jobs.
Sending Files to the Printer
Sending Files to an Alternate Printer
Finding Out the Status of Your Print Request
Canceling a Print Job

Searching for Files using find
Finding Files that Match a Pattern . .
Finding Files Newer than a Certain File
Running Commands on Files

Searching for Text Patterns Using grep
Searching a File for a Text String
Searching Multiple Files

Contents-4

8-1
8-2
8-2
8-3
8-4
8-6
8-6
8-7
8-8
8-8

8-10
8-12
8-13

9-2
9-3
9-4
9-5
9-5
9-6
9-6
9-7
9-7
9-9
9-9

9-10
9-10
9-11
9-12
9-12
9-12
9-13
9-14
9-14
9-15

Running Commands at Preset Times using at and crontab 9-16
Prerequisites 9-16
Running Commands at a Specified Time using at . . . 9-17
Running Commands at Regular Intervals using crontab 9-18

U sing sort to order files 9-20
Sort Files in Alphabetical Order 9-20
Sorting Files by Different Fields 9-21
Sorting in Numerical Order 9-22

A. Access Control Lists (ACLs)
Listing Permissions for Specific Users and Groups. A-2

Using the 11 command A-2
Using the lsacl Command A-2

Changing Permissions for Specific Users and Groups. A-4
How the chmod and chacl Commands Interact A-4
Using the chacl Command A-5

Index

Contents-S

Figures

4-1. An Example Pyramid 4-2
4-2. Directory Structure Mirroring the Pyramid Structure 4-3
4-3. The HP-UX Directory Structure 4-4
4-4. Leslie's Home Directory 4-5
4-5. Absolute Path Names 4-7
4-6. Relative Path Names from /users/engineers/leslie 4-9
4-7. Creating the projects Directory 4-10
4-8. Structure after Creating "old" under the "projects" Directory 4-11
4-9. Structure after Creating "new" under "projects" 4-11

4-10. Effect of Various "cd" Commands 4-13
4-11. The "projects" Directory Structure 4-16
6-1. Standard Input, Standard Output, and Standard Error 6-4
6-2. Standard Input, Output, and Error When Output Is

Redirected 6-7
6-3. Standard Input, Output, and Error When Input Is Redirected 6-9
6-4. Redirecting Both Input and Output 6-11
6-5. Standard Input, Output, and Error When Output and Error

Are Redirected 6-15
6-6. Standard Input and Output with Pipes and tee Command 6-17
7-1. Example LAN and Node Nam~s 7-8
7-2. The Options Menu 7-14

Contents-6

Tables

4-1. Examples of Relative Pathnames 4-8
4-2. A Comparison of Permissions for Directories and Files 4-21
7-1. Examples of Often-Used Mail Commands 7-16
8-1. Common Uses of chmod 8-10
8-2. Setting Directory Protection for the projects Directory. 8-12
9-1. Summary of Common cpio Commands for Cartridge Tape 9-8
9-2. Summary of Common cpio Commands for 9-track Magnetic

Tape. 9-8
9-3. Summary of Common sort Options 9-23

Contents-7

1
Introduction

Welcome to the world of HP-UX, a powerful, versatile system that meets
the computing needs of diverse groups of users. You can use HP-UX simply
to run applications, or you can develop your own applications in its rich
software development environment. In addition, HP-UX offers several powerful
subsystems, such as electronic mail, windows, networking, and graphics.

This book introduces you to HP-UX-teaches you the fundamentals-so you
can become productive as soon as possible. In particular, it shows you how to
do these tasks:

• Get started with your first work session (logging in and out).

• Use files, the fundamental means by which HP-UX organizes information.

• Organize your files using directories.

• Protect files and directories from being accidentally deleted or altered.

• Use file name wildcard characters to enhance your productivity with file
operations.

• Run HP-UX commands and learn more about them.

• Send and receive electronic mail.

• Help maintain security on your system.

Introduction 1-1

Tips for· Using This Guide
This guide was designed to get you "up and running" on HP-UX as quickly as
possible. For example, after reading Chapter 2, you should be able to start
using the system and to run a few simple commands.

Try to read each chapter in one sitting-typically, between 20 and 45 minutes
are required per chapter. You also should try to read chapters 1 through
8 sequentially. When you are comfortable with the concepts in a chapter,
proceed to the next chapter. Chapter 9 contains information on some
additional HP-UX commands you may find useful. You can browse in this
chapter any time you want to increase your HP-UX skills.

What Is a "System Administrator"?

Throughout this guide, you will see the term system administrator. The
system administrator is a person who manages your system, taking care of
such tasks as adding peripheral devices, adding new users, and doing system
backups. (On some systems, the system administrator may be called the
system operator or something similar.)

If you are the system administrator (for example, if you are the only user
on a single-user system), then whenever this guide refers you to the system
administrator, you should refer to your system administrator manuals.

1-2 Introduction

Conventions

This book uses the following typographical conventions within examples:

If you see . . . It means ...

colored text You type the text exactly as shown. For example,

more sample_file

means you should type exactly those characters.

computer text Indicates text displayed by the computer system. For example,

login:

indicates a login prompt displayed by the system.

italic text You supply the text. For example,

more file- name

means that you type more followed by a file name of your choice.
Italic text also is used as annotation.

o You type the corresponding key on the keyboard. For example,

(CTRL)-@)

means you hold down the (CTRL) key, and press the (Q) key.

For More Information ...

When finished reading this book, you may want to read the other Beginner's
Guides:

• A Beginner's Guide to Text Editing
• A Beginner's Guide to Using Shells

You also can read about a specific topic that interests you in other HP-UX
documentation. For details on all the manuals you can get with HP-UX, see
Finding HP- UX Information.

Introduction 1-3

A Brief Word About PAM (The Personal Applications
Manager)
This guide assumes you will be using either the Bourne, C, or Korn command
interpreters (or shells as they are called in HP-UX terminology). With these
shells, you run a command by typing the command's name on a command line
and pressing the (Return) key.

For example, you can run the date command by typing:

$ dat e (Return)

Wed Feb 10 09:54:23 MST 1988

As an alternative to these command line-oriented shells, you can opt to
use PAM, the Personal Applications Manager. PAM implements a visual,
menu-oriented interface that uses arrow keys (or a mouse), and function keys
(@ .. @).

The PAM shell is used primarily by AXE (Application Execution Environment)
users. Instead of discussing PAM, this guide emphasizes command-line shells:
Bourne shell, C Shell, and Korn shell. To learn more about PAM, refer to the
PAM tutorial in the AXE user documentation for your system or to the pam
entry in section 1 of the HP- UX Reference.

1-4 Introduction

2
Getting Started:
Your First Work Session

This chapter leads you through your first work session on HP-UX. You should
read and do the tasks in this chapter in one sitting and in the order they
appear. Do not read other chapters in this book until you have read this
chapter.

Before working through this chapter, get your username and password from
the system administrator. You will need this information in the first section,
"Logging In". On some systems, you may not have a password, so your system
administrator won't give you one.)

This chapter discusses the following topics:

• Logging in-identifying yourself to HP-UX so you can start a work session.

• Typing and running commands.

• Setting your password-to help ensure the security of your system.

• Logging out-exiting from HP-UX when you're finished using the system.

Getting Started: 2-1
Your First Work Session

Logging In

To begin using HP-UX, you must log in. When you log in, HP-UX
prompts you for your username and password (if you have one). On some
systems, you may also have to respond to a "TERM = (hp)" prompt. When
finished logging in, you should see a command line prompt.

Step 1: Getting a Login Prompt

To get a login prompt, press [Return) a few times until you see this message:

login:

If you don't get this prompt, consult your system administrator.

Step 2: Typing Your Username

Your username identifies you as a valid user of the system. HP-UX lets you log
in only if you have a username. When you see the login prompt, type your
username and press [Return). For example, if your username were leslie, you
would type:

login: leslie [Return)

The (Back space) key does not work during log in. If you make a mistake when
typing, press [Return) once or twice and HP-UX will display a new login prompt,
so you can re-enter your username.

Step 3: Typing Your Password (If You Have One)

If you do not have a password, skip this step and go to Step 4. If you do have
a password, you should see a password prompt after entering your username:

Password:

Your password is an "invisible" codeword that only you know. Passwords
help ensure your system's security. When you see the password prompt, type
your password and press [Return). To ensure that other users cannot see your
password, HP-UX does not display the characters as you type them.

2-2 Getting Started:
Your First Work Session

Step 4: Responding to the "TERM = (hp)" Prompt (Optional)

Every terminal or graphics display has a terminal type (term-type), which
HP-UX must know to communicate with the terminal. If HP-UX doesn't set
the term-type automatically, you will be prompted for it: TERM = (hp)

If you see this prompt, ask your system administrator for your term-type, and
enter it. For example, if you use a "2392a" terminal, type:

TERM = (hp) 2392a

Step 5: You're Logged In

If you completed the preceding steps correctly, HP-UX typically displays a
welcome and copyright message, followed by a command prompt. A command
prompt indicates the system is ready to accept commands. Typical prompts
are $ or % or something similar. (If you are using PAM (Personal Applications
Manager), you'll see the PAM menu instead of a command prompt.) If you see
a prompt, you can proceed to the next section "Typing Commands".

If Problems Occur ...

Listed below are some messages you might see during login and what to do if
you see them. (If you see other messages, consult your system administrator.)

If you see the message ...

Invalid login.
login:

Your password has expired. Choose a new one.
Changing password for leslie
New password:

Maximum number of users already logged in.

Do this ...

You might have made a
mistake when typing either
your username or password.
Repeat Steps 1-5.

Change your password
before logging in. Refer to
"Setting Your Password" .

You must wait until
someone logs out before you
can log in.

Getting Started: 2-3
Your First Work Session

Typing Commands

To run a command, type the command's name after the command line
prompt, and press (Return). To correct typing mistakes, use the (Back space)

key.

The Command Line Prompt

When you see the command line prompt, you can begin typing commands.
By default, the command line prompt 'is either $ or %, but it can be different,
depending on how your system administrator set up your account. In any case,
you can locate the prompt by pressing (Return) several times; HP-UX displays
the prompt every time you press (Return):

$ (Return)

$ (Return)

$

Running Commands

For the purpose of clarity and consistency,
examples throughout this book use the $ prompt.

To run a command, type the command's name after the prompt and press
(Return). The command then will begin running. When the command finishes,
the prompt reappears. For example, run the following whoami command now:

$ whoami (Return)

leslie
$

Your username is displayed here, instead of leslie.
Then the command line prompt reappears.

If you make a mistake when typing a command, use the (Back space] key to back
up and correct it.

(To make examples as clear as possible, the remainder of this book will not
show the (Return) key at the end of each command line.)

2-4 Getting Started:
Your First Work Session

To get the feel of using commands, run the date and cal commands:

$ date Displays the current date and time.
Mon Sep 28 16:56:07 MDT 1987

$ cal Displays an English calendar for current month.
September 1987

S M Tu W Th F
1 2 3 4

6 7 8 9 10 11
13 14 15 16 17 18

S
5

12
19

20 21 22 23 24 25 26
27 28 29 30

Commands are described in more detail in Chapter 5.

A Brief Word About the Shell

When you log in, you are said to be "in" a shell. The shell interprets
commands you type at the keyboard. HP-UX supports several different shells:
the Bourne, Korn, C, and PAM shells. Your system administrator determines
which shell you get when you log in.

If, after logging in, you see a Personal Applications Manager menu screen, your
shell is the PAM shell. Otherwise, you can determine which shell you're "in"
by typing the following command:

$ echo $SHELL

If echo $SHELL displays ...

/bin/sh

/bin/csh

/bin/ksh

Then your shell is ...

Bourne Shell

C Shell

Korn Shell

Your shell has many productivity-enhancing capabilities you may find useful
after you've mastered the basics in this book. To learn more about shells, read
A Beginner's Guide to Using Shells.

Getting Started: 2-5
Your First Work Session

Setting Your Password

Passwords help prevent unauthorized users from logging in to the system.
If you don't have a password, set one that only you know. When you've
set a password, change it occasionally to ensure system security. Use
the passwd command to set or change your password. (To learn more
about system security and selecting a secure password, refer to Chapter 8
"Keeping Your System Secure" .)

Choosing a New Password

Choose your new password according to these rules:

• The password must contain between six and eight characters.
• At least two characters must be letters (uppercase or lowercase).
• At least one character must be either of the following:

o Numeric (the digits 0 through 9).
o Special (neither letters nor numeric-for example, -, _, or $).

According to these rules, the following are all valid passwords:

foo-bar $money$ Number_9 @rophy

Also, uppercase and lowercase letters are different. Thus, these are all different
passwords:

foo-bar Foo-Bar FDD-BAR

When you choose a password, you want to ensure that no one can guess what
you chose. If someone knows your password, that person may log in and access
your files. Chapter 8 "Keeping Your System Secure" offers suggestions on
how to select and protect your password. These guidelines are of particular
significance if you work with sensitive material.

2-6 Getting Started:
Your First Work Session

Running the passwd Command

When you've chosen your new password, set it by running passwd:

$ passwd

After you've entered the passwd command, it leads you through these steps:

1. If you don't have a password, skip this step. If you do have a password,
passwd prompts you to enter it.

Changing password for leslie
Old password:

Your username displays here.
Enter your current password.

2. When you see the following prompt, enter your new password.

New password:

3. Next, you need to re-enter the new password to verify it:

Re-enter your new password:

You're logged in. When you log in again, use your new password.

If Problems Occur ...

If you see this ...

Sorry.

Password is too short - must be
at least 6 characters.

Password must contain at least two
alphabetic characters and at least
one numeric or special character.

They don) t match; try again.

Too many failures - try later.

You might have done this ...

Typed your current password incorrectly
to the "Old password:" prompt. Run
passwd again.

Specified a new password with less than
six characters.

Specified a new password that doesn't
conform to the rules described earlier.

Typed your new password differently
when prompted to re-enter it.

Made too many mistakes. Try again.

Getting Started: 2-7
Your First Work Session

Logging Out

When you're finished with your HP-UX work session, log out using the
exi t command. On some systems, you can use (CTRL l-@) to log out. If
you're using PAM, use (CTRL l-Cf). Logging out ensures that no other person
can use your account when you leave. (For additional information on
making your account secure, refer to Chapter 8 "Keeping Your System
Secure" .)

Using exit

Perhaps the most common way to log out is via the exit command:

$ exit

Using CTRL-O

Another commonly accepted way to log out is to hold down (CTRL) while
pressing @) ((CTRLl-@)). On some systems, however, this may not work, and
you'll see this message:

Use "exit" to logout.

Using CTRL-C (with PAM)

If you're using PAM (the Personal Applications Manager), you can exit by
holding down (CTRL) while pressing CD ((CTRL l-CD).

2-8 Getting Started:
Your First Work Session

The "logout" Message

When you log out, HP-UX typically displays a logout message, followed by a
new login prompt. Your screen might look something like this after you log
out:

l
$ exit
logout

login:

At this point, you or any other user can log in.

If none of the methods described above log you out, consult your system
administrator.

J

Getting Started: 2-9
Your First Work Session

3
Working with Files

Conceptually, a file is a named container in which you can store information.
Files are the basic means HP-UX uses to manage information. For example,
using HP-UX commands and applications, you can create files containing data
pertinent to your particular needs. This chapter discusses the following topics:

• Creating files with the cat command.

• Listing files with the Is command.

• Viewing a file's contents on the screen using the more command.

• Printing a file using the Ip command.

• Renaming, copying, and removing files.

• Finding out if you have permission to read, write, or alter files.

Working with Files 3-1

Creating and Listing Files

Using the cat command, you can create a file containing text. To list the
names of your files, use the Is command.

Creating a File with cat

The examples in this chapter and in remaining chapters assume you've created
a text file named myfile. To create the file, use the cat command as follows:

$ cat > myfile

After you type this command, the cursor sits on a line by itself: you can
now type text into the empty file. (Press (Return) at the end of each line you
type.) When you finish entering text, hold down (CTRL) and press @). The cat
command stops and returns you to the command line prompt.

You can use the cat command to create your own version of myfile. For
example, you might create the file as follows:

$ cat > myfile
The text I am typing will be stored in "myfile. "(Return)
I press RETURN at the end of each line.(Return)
When I'm finished, I hold down the CTRL key and press D. (Return)
(CTRL)-@)
$

Note You can also create and edit files using the vi text editor. To
learn how to use this editor see A Beginner's Guide to Text
Editing.

3-2 Working with Files

Listing Files

To verify that cat created myfile, run the Is command, which lists the names
of your files.

$ Is
myfile

The Is command lists myfile.

(Viewing the file's contents is discussed in the section, "Viewing and Printing
Files".)

Working with Files 3-3

Naming Files

When you choose a file name you need to follow certain rules regarding the
length of the name and the types of characters you include. If a file name
begins with a dot (.), it is "invisible" and the Is command normally will
not list it. To see invisible file names, run Is with the -a option.

Choosing a File Name

When you choose a filename, remember these rules:

• Generally, file names can contain up to 14 characters, which can be any
combination of the following:

o uppercase or lowercase letters (A through Z; a through z)
o digits (0 through 9), or
o special characters (for example, +, -, _, .).

Based on these rules, the following are valid file names:

money
lost+found

Acct.Ol.87
112.3-data

CODE.c
foo_bar

• HP-UX interprets uppercase and lowercase letters differently in file names.
Thus, the following file names all are different:

money

Note

Money MoneY MONEY

Some systems may be configured to accept filenames longer
than 14 characters. However, before you create files with longer
names check with your system administrator. If your system is
not configured correctly, the longer filenames will be truncated
to 14 characters, and may cause difficulties.

3-4 Working with Files

Invisible File Names

File names in which the first character is a dot (.) are invisible file names, since
the Is command does not normally display them. Use invisible file names if
you don't want certain files displayed when you run Is.

To illustrate, you have an invisible start-up file that the system runs when you
log in. In HP-UX terminology, this file is called a login script. It is used to
customize your working environment. (To learn more about login scripts, see A
Beginner's Guide to Using Shells.)

To force Is to list invisible file names, including the name of your login script,
run it with the -a option:

$ Is -a
.profile myfile

If your shell is ...

Bourne Shell

C Shell

Korn Shell

PAM Shell

Use -a to see invisible file names.
This is the Bourne shell, so . profile zs
shown.

Then your start-up file is ...

.profile

. login

.profile

. environ

Working with Files 3-5

Viewing and Printing Files

Using the more command, you can look at the contents of a text file. If
your system is appropriately configured, you can print a text file using the
Ip command.

Viewing a File with more

The more command displays a text file's contents on the screen. For example,
the following more command displays the contents of myfile (which you
created in the section, "Creating and Listing Files"):

$ more myfile
The text I am typing will be stored in "myfile."
I press RETURN at the end of each line.
When I'm finished, I hold down the CTRL key and press D.
$

If the file contains more lines than are on your screen, more pauses when the
screen is full. Try running more on the file /etc/disktab:

$ more /etc/disktab
@(#) $Revision 64.5$

This file contains the disktab entries for the current
sectioning scheme.

Note that the section sizes are in terms of DEV_BSIZE which
is defined to be 1024 bytes.

3-6 Working with Files

The "--More-- (4%)" message at the bottom of the screen means you've viewed
4% of the file thus far, and 96% of the file remains to be viewed. At this point,
you can do any of the following:

• To scroll through the file a page at a time, press the space bar.
• To scroll through a line at a time, press (Return).

• To quit viewing the file, press @:

Printing a File with Ip

If your system is appropriately configured, you can print a text file using the
lp (line printer) command. Before using the lp command, ask your system
administrator this question:

• Is my system set up so I can use the lp command?

If not, find out why. You may have to use a command other than lp to get
printouts. If lp does work on your system, ask the administrator this question:

• Where can I pick up my printout?

When you have this information, you can print myfile by running the lp
command:

$ lp myfile

If the 1 p command is working properly, it should display a message indicating
that it sent your file to the printer. For example:

request id is lp-number (1 file)

The number is a number assigned to the print job by the lp command. If you
don't see this message, or if you get an error message consult your system
administrator. If lp works successfully, you should get a printout with your
username displayed on the first page. How long it takes to get your printout
depends on how busy the system is and how fast the printer is.

For More Information ...

To find out more about printing, see Chapter 9, in the section "Getting
Information About a Print Job."

Working with Files 3-7

Renaming, Copying, and Removing Files

To change a file's name, use the mv command; to make a copy of a file, use
the cp command; to remove a file, use the rm command. The examples
in this section assume you have created the file myfile, as described in
"Creating and Listing Files".

Renaming Files with mv

Using the mv command, you can rename the file myfile to foofile as follows:

$ mv myfile foofile

To verify that mv renamed the file, use the Is command:

$ Is
foofile

To rename foofile back to myfile, type:

$ mv foofile myfile
$ Is Using Is, verify that it worked.

It worked! myfile

Caution When renaming files, take care not to rename a file using the
name of another file. If you do this, the file that already has
the name will be lost.

For example:

$ Is
afile bfile
$ mv afile bfile
$ Is
bfile

If you had these files ...
And you rename afile to bfile ...
Look what happens ...
The previous bf i 1 e is replaced with the old af i 1 e.

(The mv command can also be used to move files to different locations on the
system. This concept is discussed further in chapter 4 "Organizing Your Files:
Directories" .)

3-8 Working with Files

Copying Files with cp

Copy a file when you want to make a new version of it while still keeping
the old version around. For example, to make a new copy of myfile named
myfile2, type:

$ cp myfile myfile2

Now when you use the Is command, you will see the following:

$ Is
myfile myfile2

Caution If you copy a file to an existing file, the existing file will be lost.

Removing (Deleting) Files with rm

If you have files that are no longer needed, you should remove (delete) them.
Deleting unnecessary files leaves more room for other files on your system. For
example, suppose you've finished using myfile2, and it is no longer needed; to
remove myfile2, type:

$ rm myfile2

To verify that myfile2 was removed, use Is:

$ Is
myfile

If You Don't Have Permission to Access Files

Files are assigned access permissions that control who has permission to read,
alter, or remove them. If you don't have the necessary access permissions to
a file, you may not be able to rename, copy, or remove it (as you have just
learned to do). If this is the case, the system will display a message indicating
that you can't perform the command.

The next section tells you how to find out who has permission to access files.

Working with Files 3-9

Finding Out Who Can Use Your Files

Three classes of users (in various combinations) can access files: owner,
group, and other. Each class may access files in various ways: read
permission, write permission, and execute permission. Use the 11
command to view file access permissions.

Access to files is restricted by classes of users. The three basic classes of users
are:

• owner-Usually the person who created the file (for example, you).

• group-Several users who have been grouped together (along with you as the
owner of the file) by the system administrator (for example, the members of
your department).

• other-Any other user on the system.

Each of the above classes can access files in any of these three ways:

• read permission-Users with this type of permission can view the contents of
a file.

• write permission-Users with this type of permission can change the
contents of a file.

• execute permission-Users with this type of permission can execute (run) the
file as a program by typing the filename at the command line prompt.

Using the II Command to Display File Permissions

The 11 (long listing) command displays the permissions for owner, group, and
other; 11 also displays the name of the file's owner and group. To see the
permissions, owner name, and group name on myfile, for example, type the
following:

$ 11 myfile

When you press (Return), you should see something like this:

-rw-r--r-- 1 leslie users 154 Nov 4 10:18 myfile

3-10 Working with Files

The first dash in the long listing indicates that myfile is a file (if myfile were
a directory, you would see a d in place of the dash). The next nine positions
indicate read, write, and execute permissions for owner, group, and other. If a
permission is not allowed, a dash appears in place of the letter.

Here is a closer view with all permissions indicated (note that the permissions
are in "sets" of three):

rwx rwx rwx

owner group other

In the example (-rw-r--r--), owner (leslie) has read and write permission
(rw-); group (users) and other have only read permission (r--).

For More Information . ..

To learn more about the 11 command, refer to the HP-UX Reference (the 11
command is listed under is in section 1 of the Reference).

See Chapter 8 of this guide "Keeping Your System Secure" for information on
how to change the access permissions on files and directories.

Working with Files 3-11

4
Organizing Your Files: Directories

After you've used your system for a while, you may start accumulating a large
collection of files. With the help of directories, you can organize your files into
manageable, logically related groups. For example, if you have several files for
several different projects, you can create a directory for each project and store
all the files for each project in the appropriate directory.

This chapter discusses the following topics:

• Organizing files in directories.

• Determining where you are in the HP-UX directory structure--using the pwd
command.

• Using path names-to specify files and directories outside your current
working directory.

• Creating your own directories using the mkdir command.

• Moving through the directory structure with the cd command.

• Moving and copying files between directories using the mv and cp commands.

• Removing empty directories with the rmdir command.

• Using wildcard characters-shorthand for specifying filenames.

• Finding out who can access your directories-similar to listing file
permissions with the 11 command.

Organizing Your Files: Directories 4-1

What is a Directory Hierarchy?

Like files, directories are containers. But instead of text or other data,
directories contain files. In addition, directories are hierachically organized;
that is, a directory has a parent directory "above" and may also have
subordinate child directories "below." Similarly, each child directory can
contain other files and also can have child directories. Because they are
hierarchically organized, directories provide a logical way to organize files.

Directories are like chambers in an oversimplified pyramid:

• Chambers contain artifacts; directories contain files.

• A chamber contains an entrance from above; a directory has a parent
directory.

• A chamber may contain passageways to chambers below; a directory may
have subordinate child directories.

• A pyramid has one entrance at the top; the directory structure has a root
directory at the top.

Figure 4-1. An Example Pyramid

4-2 Organizing Your Files: Directories

Figure 4-2 shows the directory structure that could be used to represent the
rooms and artifacts of the pyramid in Figure 4-1. (Ovals represent directories;
boxes represent files.)

Figure 4-2. Directory Structure Mirroring the Pyramid Structure

Organizing Your Files: Directories 4-3

Determining Your Position in the HP-UX Directory Hierarchy

This section discusses the HP-UX directory structure and where you are in
this structure. All directories fall under the topmost root directory, which
is denoted by a slash (I). When using HP-UX, you are always "in" a
directory-your current working directory. And when you log in, HP-UX
places you in your home directory.

Figure 4-3 shows the two highest levels of the HP-UX directory structure.
Each directory under the root contains logically related files and directories.
Directories under the root may also, in turn, have more child directories.

(If you want to know more about

the contents of these directories,
refer to the System Administrator

Manual for your computer.)

Typically, users' home
directories are under here.

Figure 4-3. The HP-UX Directory Structure

When using HP-UX, you are always positioned "in" a directory. The directory
you are "in" is known as your current working directory. When you log in,
HP-UX always places you in a directory called your home directory. Logging
in to your home directory is like always entering the pyramid in a particular
room.

4-4 Organizing Your Files: Directories

Here is an exam pIe directory hierarchy. When Leslie logs in, she finds herself in
leslie, her home directory.

(root)

other users'" ----+--- ... other users

Figure 4-4. Leslie's Home Directory

Organizing Y'ourFiles: Directories 4-5

Specifying Files and Directories: Absolute Path Names

When specifying files in your current working directory, you can refer to
them by their names. But when referring to directories and files outside or
below your current working directory, you must use path names.

A path name specifies where a particular file or directory is within the
directory structure. Returning to the pyramid analogy, path names are like
maps showing how to get to a particular chamber or artifact in the pyramid.
There are two kinds of path names: absolute and relative.

Absolute Path Names

Absolute path names specify the path to a directory or file starting from the
root directory at the top of the pyramid. The root directory is represented by
a slash U); the path consists of a sequential list of directories (separated by
slashes) leading to the directory or file you want to specify. The last name in
the path is the directory or file you are pointing to.

To determine the absolute path to your current directory, use the pwd (print
working directory) command. The pwd command displays the "path" from the
root directory to your current working directory.

Here is an example using the pwd command:

$ pwd
/users/engineers/leslie

You used the pwd command to display the absolute path name of your home
directory-that is, the location of your current directory, starting from the root
and working down.

4-6 Organizing Your Files: Directories

Figure 4-5 shows the absolute path names for various directories and files in an
example directory structure:

/

/users

/ users/engineers

/users/ engineers/ ornie /users/ engineers/leslie /users/ engineers/solly

Figure 4-5. Absolute Path Names

Organizing Your Files: Directories 4-7

Specifying Files and Directories: Relative Path Names

You can use a relative path name as a shortcut to the location of files and
directories. Relative path names specify directories and files starting from
your current working directory (as opposed to the root directory).

You will frequently find it convenient to use relative path names. The following
table shows some common pathname shortcuts.

Table 4-1. Examples of Relative Pathnames

This relative pathname ... Means .. .

the current directory.

.. the parent directory (the directory above the current
directory) .

.. j.. two directories above the current directory.

directory_ name the directory below the current directory.

As an example, suppose the current directory (as shown in Figure 4-6) is
/user / engineers/leslie. To list the files in the directory above (which is
/user/engineers), enter:

$ Is ..
arnie leslie sally you get a listing of /user/engineers

On the other hand, to get a listing of the files in a directory immediately below
your current directory, simply enter the directory name. For example, to get
a listing of the files in the pro j ect directory, below the current directory
/user / engineers/leslie, you would enter:

$ Is projects
$ The projects directory is empty!

4-8 Organizing Your ~Files: Directories

Figure 4-6 shows relative path names for various directories and files starting
from the current directory, /users/engineers/leslie .

.. I .. I ..

.. I ..

•• /ornie • ./solly

•• /ornie/hisfile myfile projects •• /solly/herfile

Figure 4-6.
Relative Path Names from

/users/engineers/leslie

Organizing Your Files: Directories 4-9

Creating Directories

To create a directory, use the mkdir command. To get a directory listing
that differentiates files from directories, use the Isf command instead of
Is.

After you create a directory, you can move files into it, and you can even create
more directories underneath it. The mkdir (make directory) command creates
a new directory. For example, to create a child directory (under your current
working directory) named proj ects, type:

$ mkdir projects

To verify that it worked, you can use either the Is or Isf command. Both
commands display the new directory, but Isf appends a slash (/) to the end of
directory names to differentiate them from file names. For example:

$ Is
myfile projects
$ Isf
myfile projects/

List files, directories in your current working directory.
It worked!

The Isf command appends a slash to directory names.

Figure 4-7 shows the resulting directory structure.

(your home directory)

Figure 4-7. Creating the projects Directory

4-10 Organizing Your Files: Directories

The general form of the mkdir command is as follows:

mkdir new_dir_path

where new_dir_path is the path name of the directory you want to create. For
example, to create a new directory named old under the projects directory,
type:

$ mkdir projects/old

(the new directory)

Figure 4-8.
Structure after Creating "old" under the "projects" Directory

Finally, let's create one more directory, named new, and verify with Isf:

$ mkdir projects/new
$ Isf projects
new/ old/ Files and directories are listed alphabetically.

(the new directory)

Figure 4-9. Structure after Creating "new" under "projects"

Organizing Your Files: Directories 4-11

Changing Your Current Directory

Now that you've learned how to create directories under your home
directory, you're ready to learn how to move into different directories,
using the cd command.

Using the cd command, you can change your current working directory. For
example,

$ cd projects

moves you into the directory proj ects (which you created in the section
"Creating Directories"). To verify that you have, in fact, changed your current
working directory, use the pwd command, which displays your current directory.
For example, if your home directory was /users/leslie, then after you run
the "cd proj ects" command, pwd would display the following:

$ pwd
/users/leslie/projects

When you're in the new directory, you can list its contents using lsf:

$ lsf
new/ old/

Here are the directories you created earlier.

To move into the directory new under proj ects, type:

$ cd new
$ pwd
/users/leslie/projects/new

Verify where you are.
It worked!

Now if you run lsf, it won't display anything because there are no files or
directories under new:

$ lsf
$

Remember that .. is the relative path name for the parent directory of your
current working directory. So to move up one level, back to proj ects, type:

$ cd ..
$ pwd Show your current working directory.

4-12 Organizing Your Files: Directories

/users/leslie/proj ects It worked!

If you run cd without a path name, it returns you to your home directory as
the following example illustrates:

$ cd
$ pwd
/users/leslie

A re you back home?
Yes!

Experiment with the cd and pwd commands to move around your directory
structure. If you become lost, don't panic; just remember that you can run

$ cd

to return to your home directory. You can also get to any directory using its
absolute pathname. For example, to change to the proj ects directory in the
example hierarchy, enter:

cd /users/leslie/projects

Figure 4-10 illustrates how various cd commands change your current working
directory. The example assumes you're starting at the directory
/users/leslie/proj ects, and that your home directory is /users/leslie.

"cd

"cd

Figure 4-10. Effect of Various "cd" Commands

Organizing Your Files: Directories 4-13

Moving and Copying Files between Directories

The mv command lets you move a file from one directory to another. With
the cp command, you can copy a file into a different directory.

Moving Files

In addition to renaming files, the mv command can be used to move files from
one directory to another. For example, to move myfile into the proj ects
directory, type:

$ cd
$ mv myfile projects

Now verify that it worked:

$ Isf
projects/
$ Isf projects
myfile new/ old/

Move to your home directory first.

List your current working directory.
Where did myfile go?
Look in the proj ects directory.
There's myfile. It worked!

Remember that a single dot (.) for a path name represents your current
working directory. Therefore, to move myfile from the proj ects directory
back to your current working directory, type:

$ mv projects/myfile
$ Isf
myfile projects/
$ Isf projects
new/ old/

Don't forget the dot.
List your current working directory.
It worked; myfile is back.
List proj ects.
The file myfile isn't there anymore.

The general form of the mv command is as follows:

mv from_path to_path

where from_path is the file name or path name of the file you want to move,
and to_path is the name of the path to which you are moving.

4-14 Organizing Your Files: Directories

Copying Files

To copy a file into a different directory, use the cp command. For example, to
make a copy of myfile named myfile2 in the proj ects directory, type:

$ cp myfile projects/myfile2

$ Isf
myfile proj ects/ The file myfile still exists.
$ Isf projects
myfile2 new/ old/ The copy (myfile2) is in the proj ects directory.

To make a new version of myfile2 named myfile3 in your current directory,
type:

$ cp projects/myfile2 myfile3
$ Isf
myfile myfile3 projects/

The general form of the cp command is as follows:

cp from_path to_path

where from_path is the file name or path name of the file you want to copy, and
to_path is the path name of the directory or file to which you are copying.

A Caution about Moving and Copying Files

When moving or copying files, be careful not to destroy an existing file. For
example, if you type the following cp command:

$ cp myfile3 projects/myfile2

a copy of myfile3 is moved into myfile2, overwriting myfile2: the previous
contents of myfile2 are lost. (In this case, losing myfile2 doesn't matter
because the two files contain the same information.) As a general rule, before
using mv or cp, use Is or Isf to ensure that the file to which you want to move
or copy doesn't already exist.

Organizing Your Files: Directories 4-15

Removing Empty Directories

When you are finished using a directory and it is no longer needed, you
can remove it using the rmdir command. For example, if you had a
directory containing 5-year-old files on a long-dead project, you might want
to remove the files and the directory. Before removing a directory, you
must remove its files and subdirectories.

In the pyramid analogy, removing a directory is like filling a chamber with
sand. After you've removed a directory, you can no longer go into it. And
before removing a directory, you must remove its files, as well as any directories
under it.

For example, suppose you want to remove the proj ects directory and the files
it contains. Figure 4-11 shows how this structure might look:

(your home directory)

Figure 4-11. The "projects" Directory Structure

4-16 Organizing Your Files: Directories

To remove this structure, run the following sequence of commands:

$ cd

$ Isf
myfile myfile3

$ rmdir projects

projects/

rmdir: projects not empty

$ cd projects

$ Isf
myfile2 new/

$ rm myfile2

$ Isf
new/ old/

$ rmdir new

$ Isf
old/

$ rmdir old

$ Isf

$ cd

$ rmdir projects

$ Isf
myfile myfile3

old/

Move back to your home directory

List the files and directories.

Try to remove proj ects.
It won't let you.

Change directory to proj ects.

List its contents.

Remove the file myfile2.

The file myfile2 is gone.

Remove the directory new. If it's
empty, rmdir removes it.

It worked!

Now remove the directory old. If it's
empty, rmdir removes it.

It worked again!

Now move back to your home direc
tory ...

And remove proj ects.

Verify that it worked.
It worked!

Organizing Your Files: Directories 4-17

File Name Shorthand (Wildcard Characters)

Wildcard characters provide a convenient shorthand for specifying multiple
file or directory names with one name. Two of the most useful wildcard
characters are * and ? The * matches any sequence (string) of characters
(including no characters), and the? matches anyone character.

The * Wildcard

Suppose you have created the following files in your current working directory:

$ lsf
myfile myfile2 myfile3 xorbon yourfile

To list only the file names beginning with "myfile", type:

$ lsf myfile*
myfile myfile2 myfile3

Even though xorbon and yourfile exist, lsf displays only the file names that
start with myfile. If you wanted to list file names containing "file", type:

$ lsf *file*
myfile myfile2 myfile3 yourfile

The ? Wildcard

Although you probably won't use the? wildcard as much as *, it is still useful.
For instance, if you want to list only the files that start with myfile and end
with a single additional character, type:

$ lsf myfile?
myfile2 myfile3

The? wildcard character matches exactly one character. Thus, myfile didn't
show up in this listing because it didn't have another character at the end.

4-18 Organizing Your Files: Directories

Using Wildcard Characters with mv, cp, and rm

Wildcard characters are often useful when you want to move or copy multiple
files from one directory to another. For example, suppose you have two
directories immediately below your current directory, named new and old, and
these directories contain the following files:

$ Isf new
myfile myfile2
$ Isf old
myfile3 myfile4

To move all the files from the directory new into the directory old, type:

$ mv new/* old
$ Isf new
$ Isf old

The files are no longer in new.
They are in the directory old.

myfile myfile2 myfile3 myfile4

You can do a similar operation with the cp command. For example, to copy all
the files from old into new, type:

$ cp old/* new

Similarly, you can use wildcard characters with the rm command.

Caution Be careful when using wildcards that you don't accidentally
remove files you need.

For example, to remove all the files in the directory new, type:

$ rm new/*
$ Isf new
$ All the files are gone!

For More Information ...

Because wildcard characters are a feature of your shell, refer to the appropriate
entry in section 1 of the HP- UX Reference. If you use the Bourne shell, refer to
the sh entry, for the Korn shell, refer to ksh, and for the C shell, refer to csh.

Organizing Your Files: Directories 4-19

Finding Out Who Can Use Your Directories

Three classes of users (in various combinations) can access directories:
owner, group, and other. Each user class can access directories in various
ways: read permission (r), write permission (w), search permission (x).
Search permission means that you can search the contents of the directory
(for example, you can view the contents of files in the directory with
more). Use the 11 command to view directory permissions.

In "Finding Out Who Can Use Your Files" in Chapter 3, you learned that your
files are accessible by three basic classes of users. Directories are accessible by
the same three classes:

• owner-Usually the person who created the directory (for example, you).

• group-Several users who have been grouped together (along with you as
the owner of the directory) by the system administrator (for example, the
members of your department).

• other-Any other user on the same system.

Similar to permissions for files, each of the above classes may have read or
write permission on a directory. Although you can't "execute" a directory,
directories have "search" permission, which means that you can access the
contents of files in the directory with such commands as more.

4-20 Organizing Your Files: Directories

Table 4-2 compares permissions for directories and for files.

Table 4-2. A Comparison of Permissions for Directories and Files

This permission ... Means this for a directory ... Means this for a file ...

read (r) Users can view the names of the files Users can view the contents
permission contained in that directory. of the file.

write (w) Users can create, rename, or remove Users can change the
permission files contained in that directory. contents of the file.

execute/search (x) Users can search for (access) files Users can execute (run)
permission contained in that directory. For the file as a program by

example, with search permission, typing the filename at the
users can use more to view the command line prompt.
contents of files in the directory.

Organizing Your Files: Directories 4-21

Using the II Command to Display Directory Permissions

You can display access permissions for a directory, as for a file, with the
11 command. To display permissions for a specific directory, use the 11
command with the -d option.

To display permissions showing owner, group, and other for a specific directory,
use the 11 command with the -d option. For example to see the permissions on
the proj ects directory below the current directory, type the following:

$ 11 -d projects Follow the 11 command with a -d and the directory
name.

When you press (Return), you should see something like this:

drwxr-x--- 1 leslie users 1032 Nov 28 12:38 projects

The first character (d) in the long listing above indicates that proj ects is a
directory. The next nine positions (three sets of three) indicate read (r), write
(w), and search (x) permissions for owner, group, and other. If a permission is
not allowed, a dash appears in place of the letter. Here is a closer view with all
positions indicated:

d rwx rwx rwx

diredory owner group other

Now let's return to the example (drwxr-x---): owner (leslie) has read,
write, and search permission (rwx); group (users) has read and search
permission (r-x); other has no access (---) to the proj ects directory.

4-22 Organizing Your Files: Directories

For More Information ...

To learn more about the 11 command, refer to the HP- UX Reference (the 11
command is listed under is in section 1 of the Reference).

See Chapter 8 of this guide "Keeping Your System Secure" for information on
how to change the access permissions on files and directories.

Organizing Your Files: Directories 4-23

Command Syntax and On-Line Help

HP-UX has many powerful, versatile, useful commands. This brief chapter
provides some background information that will help you to use commands
more effectively.

More specifically, this chapter discusses the following topics:

• Understanding command syntax-command options and arguments .

• Displaying on-line HP-UX Reference entries (man-pages), if they are
installed on your system.

5

Command Syntax and On-Line Help 5-1

Understanding Command Syntax

HP-UX provides a wealth of powerful, versatile commands that can do a
wide variety of computing tasks. Before delving into these commands,
though, you should have a general understanding of command syntax.

Most of the commands you've used thus far have been simple in syntax; that
is, they've been either a command without any arguments (whoami), or a
command whose only argument is a file name (mkdir proj ects). In actuality,
commands can be more complex, having additional options, arguments, or
both. Options change a command's behavior. (For example, in Chapter 3, you
used the - a option to change the behavior of the 1 s command so you could list
invisible file names.) Arguments provide additional information needed by the
command. In general, command options are preceded by a dash (-).

Examples Using Options

When used without any options, the rm command removes a file without
verifying whether you really want to remove it. Suppose, for example, your
current working directory contains these files: myfile, myfilel, myfile2,
myfile3, and myfile4. You could remove all these files by typing this
command:

$ rm my*
$ All the files are removed, no questions asked.

If you want rm to prompt you for verification before removing each file, use the
-i option:

$ rm -i my*
myfile: ? y Type y to remove each successive file; n to leave it alone.
myfilel: ? y
myfile2: ? y
myfile3: ? y
myfile4: ? n You don't want to remove this file, after all.
$ Is
myfile4 It worked ... rm did not remove myfile4.

5-2 Command Syntax and On-Line Help

Examples Using Arguments

As you learned in "Typing Commands" in Chapter 2, the cal command
displays an English calendar for the current month. With command arguments,
you can specify which calendar month and year to display. For example, to
display a calendar for September, 1752, type the cal command as follows:

$ cal 9 1752
September 1752

S M Tu W Th F S
1 2 14 15 16

17 18 19 20 21 22 23
24 25 26 27 28 29 30

(This is not an error. When England
switched from a Julian to a Gregorian
calendar in September, 1752, 11 days
were removed from this month.)

Enclosing Arguments in Apostrophes

When an argument contains embedded blanks, you must enclose it between
apostrophes ('word1 word2') . For example, the following grep command
displays all lines in myfile containing "I am":

argument

$ grep 'I am' myfile
The text I am typing will be stored in "myfile."

Running Multiple Commands on the Same Command Line

Occasionally, you may find it useful to run two or more commands on the
same command line. To do so, separate the commands with a semicolon, as
illustrated below:

$ whoami ; date
leslie
Fri Oct 2 15:51:57 MDT 1987

Output from whoami
Output from date

Command Syntax and On-Line Help 5-3

Accessing On-Line Command Help: man-pages

HP-UX commands are documented thoroughly in the HP-UX Reference.
In addition, HP-UX can also store HP-UX Reference entries (commonly
known as man-pages) on disk. If your system has these "on-line"
man-pages, you can use the man command to display them on the screen.

The man (manual) command displays a command's syntax plus a detailed
description of the command and its options and arguments (if any). Also, man
may display exam pIes of command usage and provide other information such as
system files used, related commands, diagnostics, possible problems (bugs).

For example, you can use man to learn more about the man command itself:

$ man man

man - find manual information by keywords;
print out the manual

man - k keyword ...
man -f file
man [-] [section] title ...

Man is a program that gives information from the
HP-UX Reference Manual ...

5-4 Command Syntax and On-Line Help

The message at the bottom of the screen means there's more of the file for
you to see (on some systems, you'll see --More-- (11%), which means you've
viewed 11% of the file, and 89% remains). At this point, you can do any of the
following:

• Step through the file a page at a time by pressing the space bar.
• Scroll through a line at a time by pressing (Return).

• Quit viewing the reference page by pressing (9).

(You can't move backward through the file; only forward.)

Note: It may take anywhere from a few seconds to a few minutes for the man
command to display information.

For details on the command's syntax, refer to the "SYNOPSIS" section. The
above example shows, for instance, that the man command actually has three
different syntaxes:

man -k keyword ...
man -f file ...
man [-] [section] title ...

The brackets, [], indicate that the enclosed parameter is optional. For
example, when you ran the man command, you used the third syntax, without
the optional parameters:

man [-] [section] title

\
$ man man

You should experiment with using the man command to learn more about the
various commands we've discussed thus far; for instance, to learn more about
the Is command, type:

$ man Is

To learn more about the cp command, type:

$ man cp

Command Syntax and On-Line Help 5-5

How the Shell Interprets Commands

By learning about special features of shells, you can become more proficient
with HP-UX. This chapter introduces you to some of the useful features of
shells.

Specifically, this chapter discusses the following topics:

• What a process is, and how it is created.

6

• How commands handle standard input, standard output, and standard error.

• Redirecting command output to a file or device such as a printer, instead of
to the screen.

• Redirecting command input to come from a file, instead of the keyboard.

• Combining output and input redirection in one command line.

• Redirecting standard error from the screen to a file or device.

• Connecting two or more processes with pipes, so the standard output of one
process becomes the standard input to the next process.

How the Shell Interprets Commands 6-1

How the Shell Interacts With Processes

When you log in, you are said to be "in" a shell. The shell interprets
commands you type at the keyboard. After the shell interprets a command
line, HP-UX loads the named program (command) into memory and
begins running the program. When a program is loaded and running, it is
called a process. HP-UX assigns every process a unique number, known as
a process identifier (PID).

How to Create a Process

When you log in, HP-UX starts your shell. During login, HP-UX copies the
shell program from system disk into memory. When it is in memory, the shell
program begins executing, and it becomes a process that lasts until you log
out.

Similarly, the commands you type create processes. After you type a command
line, the following events take place:

1. The shell interprets the command line and searches the disk until it finds
the requested program.

2. The shell asks HP-UX to run the program; then control transfers from the
shell to HP-UX.

3. HP-UX copies the specified program from a disk file into memory. When the
program resides in memory, it begins executing-and a process is created.

4. When the program finishes executing, control transfers back to the shell,
and the process disappears.

Note: An important difference exists between the terms program and process.
Program refers to the file stored on the disk. Process refers to the copied
program that is actively executing in memory.

6-2 How the Shell Interprets Commands

What Are Process Identifiers?

HP-UX assigns every process a unique number called a process identifier or
PID. HP-UX manages system resources and determines when each process
runs. The PID identifies each individual process, thus allowing HP-UX to track
all the processes that are running at any given time.

For More Information ...

Your shell has many powerful, productivity-enhancing capabilities you may
find useful after you've mastered the basics in this book. To learn more about
processes, shells in general, and the capabilities of your particular shell, read A
Beginner's Guide to Using Shells.

How the Shell Interprets Commands 6-3

Overview: Understanding Standard Input, Standard
Output, and Standard Error

When a process begins executing, HP-UX automatically opens three files
for the process: "standard input", "standard output", and "standard
error." Standard input usually is read from the keyboard; standard output
and standard error usually are written to the terminal screen.

Each process opens three standard files: standard input (stdin), standard
output (stdout), and standard error (stderr). Programs use these files as
follows:

• Standard input is the place from which the program expects to read its
input. By default, processes read stdin from the keyboard.

• Standard output is the place the program writes its output. By default,
processes write stdout to the terminal screen.

• Standard error is the place the program writes its error messages. By
default, processes write stderr to the terminal screen.

Figure 6-1 illustrates the relationship of these files to the process.

Figure 6-1.
Standard Input, Standard

Output, and Standard Error

6-4 How the Shell Interprets Commands

Examples Using the Standard Files

The following three examples illustrate standard output, standard input, and
standard error, respectively:

$ whoami
terry
$

The whoami command begins the process.
Standard output is displayed on the screen.
Control returns to the shell.

The above example illustrates standard output. In this example, the whoami
command uses standard output to display the username of the person typing
the command. The prompt returns, indicating that the shell is ready for
another command.

$ sort
duffy
muffy
daffy
(CTRL)-@)
daffy
duffy
muffy
$

The sort command uses standard input.
Enter standard input at the keyboard.

End of standard input.
Standard output is displayed on the screen.

Control returns to the shell.

The above example uses the sort command to sort text typed at the keyboard.
Typing (CTRL }-@) ends standard input. The standard output is displayed on the
terminal screen.

$ mroe memo
mroe: not found
$

The process begins.
Standard error is displayed on the screen.
Control returns to the shell.

The standard error example, above, illustrates what happens if you misspell a
command. The typing error causes the shell to generate an error message that
is sent to standard error. Again, the prompt returns, indicating that the shell
is ready for another command.

How the Shell Interprets Commands 6-5

Writing Standard Output to a File

The shell lets you redirect the standard output of a process from the
screen (the default) to a file. Redirecting output lets you store the text
generated by a command into a file; it's also a convenient way to select
which files or devices (such as printers) a program uses. To redirect a
process's output, separate the command and the output file name with a
greater-than sign (»; to append the output to an existing file, use two
greater-than signs (»).

Redirecting Standard Output

You can use output redirection with any command that writes its output
to stdout (your screen). You can redirect output either to a new file or to
an existing file. To redirect output, use a greater-than sign (». The word
following the sign identifies the file name where the stdout data is to be
written. If the file exists, its previous contents are lost. If the file does not
exist, it is created. In its simplest form, the command syntax is as follows:

command> outfile

where command is the command whose output is redirected, and outfile is the
name of the file to which the process writes its standard output.

The example below shows output redirection using the who command, which
displays a list of users currently logged in to the system. Instead of displaying
the users on the terminal screen, the output is redirected to the file whoison.
The cat command lists the contents of the whoison file, showing that the
output redirection was successful:

$ who
$ cat
pat
terry
kim
$

> whoison
whoison

console
tty01
tty02

Oct
Oct
Oct

9 08:50
9 11:57
9 08:13

6-6 How the Shell Interprets Commands

Redirect output to whoison.
Display contents of whoison.

Figure 6-2 illustrates where stdin, stdout, and stderr go when output is
redirected to a file.

Figure 6-2.
Standard Input, Output, and Error When

Output Is Redirected

Appending Output to a File

Output redirection that appends to an existing file uses two greater-than signs
(»). The word following the redirection sign identifies the file to which stdout
data is appended. If the file exists, the new data is appended to the end of the
file. If the file does not exist, it is created. The command syntax is:

command> > outfile

where command is the command whose output is redirected, and outfile is the
name of the file to which the process appends the standard output.

The next example executes the date command with the output redirected to
append to the whoi son file:

$ date » whoison
$ cat whoison
pat console Oct
terry tty01 Oct
kim tty02 Oct
Fri Oct 9 13:20:16 MDT 1987
$

9 08:50
9 11:57
9 08:13

Append output to whoison.
Display contents of whoison.

How the Shell Interprets Commands 6-7

Using Files for Standard Input

The shell lets you redirect the standard input of a process so that input
is read from a file instead of from the keyboard. To redirect a process's
input, separate the command and the input file name with a less-than sign
(<).

Your shell can redirect the data flow into a program so that the keyboard is
not used. Input that is normally typed at the keyboard can be redirected to be
read from a file. You can use input redirection with any command that accepts
input from stdin (your keyboard). You cannot use input redirection with
commands, such as who, that do not accept input from stdin.

To redirect input, use a less-than sign «). The word following the sign
identifies the file from which the stdin data is read. The file must exist for the
redirection to succeed. In its simplest form, the command syntax is as follows:

command < infile

where command is the command whose input is redirected, and infile is the
name of the file from which the process reads standard input.

The following example illustrates input redirection. First, standard output
from the who command is redirected to a file named newwhoi son. Second, the
cat command displays the contents of newwhoison. Finally, standard input for
the wc (word count) command is redirected to come from the newwhoi son file:

$ who > newwhoison
$ cat newwhoison
pat console
terry tty01
kim tty02
kelly tty04
$ wc -1 < newwhoison

4
$

Oct 9 08:50
Oct 9 11:57
Oct 9 08:13
Oct 9 10:04

6-8 How ,the Shell Interprets Commands

Redirect O'lJ,tput to newwhoi soon
Display contents ofnewwhoison

Redirect input from newwhoison

In the preceding example, the we command with the -1 option counts the
number of lines in the input file. Because input is redirected from newwhoison,
this number equals the number of users logged in to the system when the who
command was executed.

Figure 6-3 illustrates where stdin, stdout, and stderr are directed when
input is redirected from a file.

Figure 6-3.
Standard Input, Output, and Error When

Input Is Redirected

How the Shell Interprets Commands 6-9

Writing Both Standard Input and Standard Output to Files

You can use one command to redirect both standard input and standard
output. Do not use the same file name for standard input and standard
output. When input and output operations use the same file, the original
contents of the input file are lost.

Using the Default Standard Input and Standard Output

The following example uses the sort command to sort text typed at the
keyboard. Typing (CTRL HQ) ends standard input. The standard output displays
on the terminal screen as follows:

$ sort
muffy
happy
bumpy
(CTRL I-@)
bumpy
happy
muffy
$

Redirecting Standard Input

End of standard input.

End of standard output.

In the following example, input is redirected:

$ cat socks
polka dot
argyle
plaid
$ sort < socks

argyle
plaid
polka dot
$

Display contents of socks.

Redirect input from socks and sort the
contents.

6-10 How the Shell Interprets Commands

In the preceding example, the sort command uses a file named socks as input.
As with the first example, the standard output displays on the terminal screen.

Using Both Standard Input and Standard Output Redirection

The next example combines both input and output redirection:

$ sort < socks > sort socks
$ cat sort socks
argyle
plaid
polka dot
$

Use both input and output redirection.
Display contents of sortsocks.

In this example, the sort command reads input from the socks file and writes
output to the sortsocks file; thus, standard output (unlike the first two
examples) does not display on your screen.

Figure 6-4 illustrates where stdin, stdout, and stderr are directed when both
output and input are redirected from and to files.

Figure 6-4. Redirecting Both Input and Output

How the Shell Interprets Commands 6-11

Writing Standard Error to a File

Most programs write error messages to the default standard error (the
screen). But the shell lets you redirect the standard error of a process from
the screen to a file. Redirection symbols and syntax vary among the shells.

Your shell can redirect error messages to a file so the terminal screen is not
used. Redirecting standard error is a convenient way to write error messages to
a file. In the Bourne Shell and Korn Shell, the standard error file is associated
with file descriptor digit 2. The file descriptor digit tells the shell what
standard file is referenced:

• File descriptor 0 is associated with standard input.
• File descriptor 1 is associated with standard output.
• File descriptor 2 is associated with standard error.

To redirect a process's standard error, separate the command and the error
file name with the appropriate file descriptor digit (2) and a greater-than sign
(2)). In its simplest form, syntax for standard error redirection is as follows:

command 2> errorfile

where command is the command whose stderr is redirected, and errorfile is
the name of the file to which the process writes its standard error.

Note: C Shell syntax is:

(command > outfile) >& errorfile

Usually the difference between standard output and standard error is hard to
see. For example, if you ask the Is command to display a file that does not
exist, the command generates an error message that is written to your terminal
screen. Because both standard output and standard error use the terminal
screen, nothing visibly distinguishes between the two standard files.

6-12 How the Shell Interprets Commands

In the example below, "nonesuch not found" is an error message written
to standard error. By redirecting the standard error, the error message is
redirected to the file none error and does not display on the terminal screen:

$ Is nonesuch
nonesuch not found Standard error message.
$ Is nonesuch 2> none error Redirect stderr.
$ cat none error Display contents of none error .
nonesuch not found
$

In the example, standard error is redirected to a file, but standard output
still prints on your terminal screen. This example is not typical of how to
use standard error redirection. More typically, you redirect both stdout and
stderr, and check the contents of the files later.

The following section describes how to redirect both standard error and
standard output.

How the Shell Interprets Commands 6-13

Redirecting Both Standard Error and Standard Output

In the preceding section, you learned how to redirect standard error to
a file and still print standard output on the terminal screen. Usually,
however, you redirect both standard output and standard error. Standard
output and standard error can be written to different files or to the same
file.

To redirect stderr and stdout to different files, use the following syntax:

command> outfile 2> errorfile

where command is the command whose stdout and stderr are redirected,
outfile is the name of the file to which the process writes stdout, and errorfile
is the name of the file where the process writes stderr.

Note: C Shell syntax to redirect output and error to different files is:

(command> outfile) >& errorfile

To redirect stderr and stdout to the same file, use the following syntax:

command 1> outfile 2>&1

where command is the command whose stdout and stderr are redirected, and
outfile is the name of the file to which the process writes stdout. The 2>&1
tells the shell to write standard error (file descriptor 2) in the file associated
with standard output (>&1).

Note: C Shell syntax to redirect output and error to the same file is:

command >& outfile

6-14 How the Shell Interprets Commands

Figure 6-5 illustrates where stdin, stdout, and stderr are directed when
output and error are redirected to a file.

Figure 6-5.
Standard Input, Output, and Error

When Output and Error Are Redirected

How the Shell Interprets Commands 6-15

Using the Output of One Command as Input to Another:
Pipes

The shell lets you connect two or more processes, so the standard
output of one process is used as the standard input to another process.
The connection that joins the processes is a pipe; using pipes within
a command line is a pipeline. To pipe the output of one process into
another, separate the commands with a vertical bar (I).

In previous sections, standard output and standard input were redirected to
and from files. Using a pipe, output from one command is sent directly to
another command as input. A pipe can link any two programs provided the
first program writes its output to stdout and the second program reads its
input from stdin. The general syntax for a pipe is as follows:

commandl I command2

where commandl is the command whose standard output is redirected or
piped to another command, and command2 is the command whose standard
input reads the previous command's output. You can combine two or more
commands into a single pipeline. Each successive command has its output
piped as input into the next command on the command line:

commandl I command2 I ... I commandN

You can use pipes whenever one command needs the output of another
command. In the following example, output from the who command is stored
in the file newwhoison. Then, the newwhoison file is used as input to the we
command:

$ who > newwhoison
$ we -1 < newwhoison

3

Redirect output of who to file newwhoi son.
File newwhoi son is input to we command.
Sample result.

With a pipeline, these two commands become one:

$ who I we -1
3

6-16 How the Shell Interprets Commands

As this example illustrates, using pipes bypasses the need for temporary
intermediate files. Instead, the standard output from the first command is sent
directly to the second command as its standard input.

Using the tee Command with Pipes

The tee command lets you divert a copy of the data passing between
commands to a file without changing how the pipeline functions. The example
below uses the who command to determine who is on the system. In the
example (which is further illustrated in Figure 6-6), the output from who is
piped into the tee command, which saves a copy of the output in the file
sa vewho, and passes the unchanged output to the wc command:

$ who

$ cat
pat
terry
kelly
$

who

I tee savewho I wc -1
3
savewho

console
tty01
tty04

stdout
becomes

stdin
r--------,
I tee I
I I

I I

I I L ___
- - _ __ .J

stdout

~
r -....
I"-- ,../

savewho

Oct 9 08:50
Oct 9 11:57
Oct 9 10:04

stdout
becomes

stdin ~ stdout

o==>

Figure 6-6. Standard Input and Output with Pipes and tee Command

How the Shell Interprets Commands 6-17

For More Information ...

HP-UX provides filter programs that are useful in pipelines. These programs
accept text as input, transform the text in some way, and produce text as
output. Filter commands include adjust, awd, cat, cut, grep, head, more, pr,
rev, sed, sort, spell, and tail. For information on these commands, refer to
the HP-UX Reference (section 1).

6-18 How the Shell Interprets Commands

7
Sending and Receiving Mail

If you are on a multi-user system, you can send mail messages to other users
on your system using the elm mailer. And if your system is connected to a
network, such as a local area network (LAN), you may also be able to send
mail messages to users on other systems.

This chapter does not describe everything there is to know about using the elm
mail. But it does describe enough for you to send and read mail messages.

Specifically, this chapter discusses the following topics:

• Sending mail to users on your system

• Reading your mail

• Sending mail to users on other systems

• Saving and deleting mail messages

• Customizing elm

• Using common mail commands

Sending and Receiving Mail 7-1

Getting Started with the Elm Mailer
I

Using the elm lI!ailer, you can send mail messages to other users on your
system. To bring up the elm mailer, enter

$ elm

You see a display similar to the following:

Mailbox is '/usr/mail/leslie' with 3 messages. [Elm revision: X.X]

N 1
2
3

Apr 2
Apr 2
Apr 3

Robert
Lynn
Patrick

(24)
(154)
(78)

Meeting Tommorrow
More Software Requests
Hi there

You can use any of the following commands by pressing the first character;
D)elete or U)ndelete mail, M)ail a message, R)eply or F)orward mail, Q)uit.
To read a message, press <return>. j = move down, k = move up, ? = help

Command: _

You can enter an elm command in two ways:

• Type the first letter (uppercase or lowercase) of the command.

• Press the function key that corresponds to the command. (You can execute
the command menu choices, • etc. that appear at the
bottom of the screen by pressing function keys @) through @ at the top of
your keyboard.)

7 -2 Sending and Receiving Mail

The examples in this guide use the first method, typing the first letter of the
command.

Leaving Elm

Now that you're in elm, practice leaving it. Enter

Command: q Keep mail in incoming mailbox? (yIn) y

Respond y to the prompt or press (Return).

Any messages in the incoming mailbox remain there, and the shell prompt
returns. (If you answer n to the prompt, messages are stored in an alternate
mailbox; the default is homedirectory /mbox.)

Sending and Receiving Mail 7-3

Sending Mail to Other Users on Your System
One of the easiest ways to learn how to send a mail message is to send one to
yourself. If you're not already in elm, enter:

$ elm

To mail a message, type:

Command: m

Elm responds with a prompt requesting the mail address of the recipient.

Send the message to: leslie Enter your own user name.

Elm then responds with a subject line prompt:

Subject of message: Type the subject line for the message.

For the message we're about to type, you might enter a subject line like:

Subject of Message: Important Message to Myself

After entering the subject line, press (Return). Elm responds with a prompt for
the carbon copies:

Copi es To: Since you're sending a message to yourself,
you don't want to send any additional copies
so press (Return).

On most systems, elm brings up the vi editor. (Some systems may be
configured to bring up a different editor).

If you're in vi, press i to enter insert mode, and then begin typing the message.
At the end of each line, press (Return).

This is a mail message sent to myself. Type the message.
Does it work?
We'll soon see.

Goodbye,
Leslie

To exit the vi editor and save your message, press ~ and then enter:

:wq

7 -4 Sending and Receiving Mail

(For more information on the vi editor see A Beginner '8 Guide to Text
Editing.)

After you exit the editor, you'll see the following message on the screen.

Please choose one of the following options by the first character:
E)dit message. edit H)eaders. S)end it. or F)orget it. s

To mail your message, enter

s

After you've sent the mail message, the elm main screen reappears, and the
message "Mail Sent" is displayed.

It might take a few minutes for the system to deliver the message. To learn
how to read the message you just sent to yourself, see "Reading Your Mail".

Sending a Message to Multiple Recipients

To send a message to multiple users, specify each user's name next to the elm
prompt for a recipient.

Send the message to: JaneS PaulaW JasonL

Sending and Receiving Mail 7-5

Reading Your Mail

To read your mail, bring up the elm mailer. If you do have mail, elm
displays a list of mail messages. You can read the current message or pick
a specific message to read.

To determine whether you have any mail, type:

$ elm

The elm screen appears. If you have messages, elm lists the number of
messages. You'll see a display like the following:

Highlighting shows current message
(next message to read)

Message status
N=new message

Message number

ilbox is

Number of lines

ie' with 4 messages. [Elm revision: X.Xl

N 2 Apr 3 Robert (24) Meeting Tommorrow
3 Apr 2 Lynn (154) More Software Requests
4 Apr 2 Patrick (78) Hi there

T T . Subject of message

Who sent the message

Date the message was sent

To read the current message (that is, the message highlighted in inverse video)
press (Return 1. (On some systems the current message may be indicated by a > to
the left of the message.)

7 -6 Sending and Receiving Mail

The following example shows the output from reading message 1 - the message
to yourself.

Message 1/4 from Leslie Pendergrast

Subject: Important Message to Myself
To: leslie
Date: Mon, 10 Jul 89 16:26:45 PDT
Cc:

This is a mail message sent to myself.
Does it work?
We'll soon see.

Goodbye,
Leslie

To return to the elm main screen, press (Return).

More Tips on Reading Messages

You can select a message to read as follows:

• Type j to advance to the next message, k to move to the previous one. Press
(Return) to read the message.

• To read a specific message, type the number of the message and press (Return).

Displaying Message Headers

Only ten message headers are listed on the screen at one time. If you have
more than ten messages you can display them as follows:

• To see the next page of message headers, press +.

• To see the previous page, press -.

• To move to the first message in the list, press =.

• To move to the last message in the list, press *.

Sending and Receiving Mail 7-7

Sending Mail to Users on Other Systems

If your system is connected to other systems over a LAN (local area
network), UUCP or other similar networking facility, you may be able to
send mail over the LAN to users on other systems.

Node Names

Every system connected over the LAN has a unique node name (also known as
a host name). When sending mail to each other over LAN, systems must know
each others' node names. Figure 7-1 shows an example LAN with four systems
connected. The node names are research, develop, market, and sell.

research market

Series 800/850 Series 500/540

I I
I I

Series 300/350 Vectra

develop sell

Figure 7-1. Example LAN and Node Names

To determine your system's node name, use the hostname command.

$hostname
market Your hostname is displayed.

7 -8 Sending and Receiving Mail

Mail Syntax when Mailing to Other Systems

The general form of syntax when mailing to a user on another system is either:

node/user

or

user@node

In the above example, node is the node name of the system the person is on,
and user is the person's user name. Which syntax you use depends on how
your system is configured to send mail. Ask your system administrator which
syntax to use on your system.

Some Example Mail Addresses

Suppose you want to send mail to user john, who uses the system named sell;
then you would use one of the following mail addresses (the exact syntax you'll
use depends on how your system is configured to send mail):

In respOI\Se to the elm prompt, enter

Send the message to: sell!john

or

Send the message to: john@sell

To send mail to arnie on your system, john on the sell system, and leopold on
the research system, use one of the following addresses:

Send the message to: arnie sell!john research!leopold

or

Send the message to: arnie john@sell leopold@research

Sending and Receiving Mail 7-9

Deleting Mail Messages

After you've read your mail messages, you may want to delete them. You
can mark messages for deletion using the d command. When you quit elm
you have the option of deleting the marked messages.

Marking Messages to be Deleted

To delete one or more mail messages:

1. To delete a mail message, press d while the message is the current message.
A D appears to the left of the message to show that it is marked for deletion.

You can mark additional messages for deletion by making each message
the current message and then pressing D. Remember, to move to the next
message, press j, to move to the previous message, press k.

The following screen shows two messages marked for deletion.

Mailbox is '/usr/mail/leslie' with 4 messages. [Elm revision: X.X]

D 1
2
3

D 4

Apr 3
Apr 3
Apr 2
Apr 2

Leslie
Robert
Lynn
Patrick

(6)
(24)
(154)
(78)

7 -10 Sending and Receiving Mail

Important Message to Myself
Meeting Tommorrow
More Software Requests
Hi there

2. When you enter q to quit elm, you'll be asked to confirm that you want any
messages marked with a D deleted.

Delete messages? (yin) y

Press y or [Return) to delete the messages, or n to keep them. For example,
press y or [Return) to delete messages 1 and 4 in the preceding example.

The next section tells you how you can store your messages in a different
mailbox or save them to a file.

Sending and Receiving Mail 7-11

Saving a Mail Message to a File

When you quit elm you have the option of keeping your messages in the
incoming mailbox (where your new messages arrive), or storing them in
another mailbox (the default is homedirectory/mbox). While in elm you
can also save messages to a designated file.

To save the current message to a file, at the elm command prompt, type:

Command: s

The following prompt appears;

Command: Save Message
File message in: =/ username

If you press (Return), the message is saved in a file named with your username in
the Mail directory below your home directory. The default mail option is set
so that the equal sign (=) is shorthand for homedirectory /Mail. If the Mail
directory doesn't already exist, you need to create it.

If you want to save the message in another file, enter the name of the file. For
example,

Command: Save Message
File message in: =/oldnews

Supposing that Leslie is the user, the current message is saved in the file
oldnews in the /user/leslie/Mail directory. If the file already exists, the
message will be appended to the contents of the file. If there is no existing
oldnews file, one will be created.

After you save a message in a file, the message is marked with a D for deletion.

Viewing the Contents of Saved Messages

There are two ways to view the contents of messages saved in a file:

• The most common way to view saved messages is to change your mail box
and view them like you do in the incoming mailbox.

7 -12 Sending and Receiving Mail

For example, assume that you have saved in the file oldnews two messages
titled "More Software Requests" and "Meeting Tomorrow". To view these
messages in the oldnews mailbox, use the change mailbox command. Enter:

Command: c

One or more prompts appear asking you whether you want to keep mail in
your incoming mailbox or delete it. Answer y or n as you choose.

You're prompted next for the name of another mailbox.

Name of new mailbox: =/oldnews Enter the name of the file that
contains the messages you want to
see. Remember the = is shorthand
for homedirectoryjMail

The mailbox changes to =/oldnews. You can manipulate (read, edit, send,
etc,) the messages in the oldnews mailbox just as you do messages in the
incoming mail box.

Mailbox is '=/oldnews' with 2 messages. [Elm revision: X.X]

1
2

Apr 3
Apr 2

Robert
Lynn

(24)
(154)

Meeting Tommorrow
More Software Requests

• A second way to view messages saved in a file is to use a shell command
such as more. If you are in elm and want to access a shell command like
more without leaving elm, use "!" to get to a shell prompt. For example, to
examine the contents of the oldnews file, enter:

Command: ! Enter an exclamation
point (!)

Shell Command: more /user/leslie/Mail/oldnews Enter a shell command.

Press (Return) to return to elm.

Sending and Receiving Mail 7 -13

Customizing Elm

The elm mailer has different options you can set to make it more
convenient for you to use. Among features you can change are the menus
that appear on the screen, the printer your mail is sent to, and the order in
which your mail is listed in your mailbox.

Bringing Up the Option Menu

To bring up the option menu, press 0 at the elm command prompt:

Command: 0

You'll see a menu similar to the following:

C)alender file
D)isplay mail using
E)ditor
F)older directory
S)orting Criteria
O)utbound mail saved
P)rint mail using
Y)our full name

A)rrow cursor
M)enu display

U)ser level
N)ames only

/user/leslie/calender
builtin
/usr/bin/vi
/user/leslie/Mail
Date Mail Sent
/user/leslie/mbox
pr %s I Ip
Leslie Pendergrast

OFF
ON

o (for beginning user)
OFF

Select first letter of Option line. '>' to Save. or R)eturn

Command:

Figure 7-2. The Options Menu

7-14 Sending and Receiving Mail

This guide does not describe all of the options in the option menu. Rather, it
gives you an example of changing an option; in this instance how to change the
order in which your mail is listed.

Changing the Order of Your Mail Messages

To change the order in which your mail messages are listed in your mailbox,
press s (the first letter of S)orting criteria) at the option menu prompt:

Command: s

You'll see a message indicating how messages are currently sorted. For
example,

This sort will order most-recently-sent to least-recently-sent

To see different choices for sorting your messages, press the (space bar). When you
see the method you want press (Return).

For instance, when you see:

This sort will order by sender name

Press (Return), then press > to save the change.

The change is recorded in the elmrc file in the . elm directory below your home
directory. This file controls many of the customized features of elm. (If the
. elm directory does not exist, you need to create it.)

To return to your mailbox, press (Return) again.

The messages in your mailbox will now appear in alphabetical order by sender
name.

To get information about a specific option in the option menu, type? and then
type the first letter of the option.

For More Information .. .

For more information on the options command and the elmrc file see the elm
entry in section 1 of the HP- UX Reference.

Sending and Receiving Mail 7 -15

A Summary of Useful Mail Commands

While you are "in" elm, you can do many tasks, such as editing a mail
message, replying to a message, or forwarding a message.

Table 7-1. Examples of Often-Used Mail Commands

The mail
command Does this ...

? Get help on elm commands.

! Allows you to send a command to the shell without leaving elm.

a Set up mail aliases.

c Change the mailbox.

d Mark messages for deletion.

f Forward the current message to another user.

g Send a group reply to all recipients of the original message.

j Move the message pointer to the next message.

k Move the message pointer to the previous message.

m Send mail to a specified user or users.

0 Allows you to alter the setting of different mail parameters, including
the sorting method for messages, the destination of printed messages,
the type of menus displayed, and so on.

p Print messages. (You can change the destination of printed messages
using the 0 command listed above.)

q Quit elm with the option of changing the contents of the mailbox.

r Reply to the author of the current message.

s Save a message to a file.

x Exit elm without making any changes.

7 -16 Sending and Receiving Mail

To see a summary of all of the commands you can use from elm, type "?" at
the elm command prompt.

You can abbreviate every mail command (except help) merely by specifying
the first letter. For example, you can abbreviate the delete command with a
single d. To abbreviate help, use a question mark (?).

For More Information ...

For more information on the elm commands see the following entries in section
1 of the HP- UX Reference:

• elm
• readmail
• newmail
• elmalias

Sending and Receiving Mail 7 -17

8
Keeping Your System Secure

HP-UX provides many security features to protect files from unauthorized
access. However, you need to follow good security practices to maintain
security on your system. The degree to which you need to enforce security
measures depends on where you work, your workplace's security policy, and the
type of information with which you work.

Security Strategies
This chapter summarizes the security strategies you should follow to help keep
your system secure:

• Become familiar with the security policies of your workplace.

• Keep your terminal secure.

• Choose a secure password, and protect your password after you've chosen it.

• Know who has permission to access your files and directories.

• Adequately protect sensitive files and directories from unauthorized access.

Keeping Your System Secure 8-1

Securing Your Terminal

When you are working with sensitive material, take care to position your
terminal so the screen is not visible to others. Never leave your terminal
unattended: log off.

Guidelines for Securing Your Terminal

When working with sensitive material, take these security precautions:

• Position your terminal so the screen points away from open windows and
doors .

• Never leave your terminal unattended:

o Exercise care when logging in. Make sure no unauthorized person is
observing you.

o Log off if you will be away from your terminal for a long time (such as
several hours or overnight).

o Clear your display if you leave your terminal for a brief period. Type
clear at the command line prompt. (The clear command clears only the
current screen; you can still scroll up and see information.)

Note Check the security policies of your workplace. You may be
required to log off whenever you leave your terminal, even if
only for a brief period.

8-2 Keeping Your System Secure

Working in an Audited Environment

HP-UX provides the capability to audit computer use, both on an individual
and system-wide basis. Depending on how your system is configured, your
actions may be recorded by an audit program. This program monitors user
actions at your terminal and records security-relevant information.

Keeping Your System Secure 8-3

Choosing a Secure Password

When you choose a password, you want to ensure that no one can guess
what you chose. If someone knows your password, that person may log in
and access your files. This section offers suggestions on how to select and
protect your password. These guidelines are of particular significance if
you work with sensitive material.

Selecting a Secure Password

When selecting a password in a secure environment, follow these guidelines:

• Choose a word that isn't publicly associated with you (your personal or
professional life, your hobbies, etc.):

o Don't use your name, your spouse's name, your children's names, or your
pets' names.

o Don't use the name of your street or your car.

o Don't use phone numbers or special dates (anniversaries, birthdays, etc.).

o Don't use your address, social security number, or license plate numbers.

• Choose a word that isn't listed in the dictionary (spelled either forwards or
backwards). Password-cracking programs can use dictionary lists.

What can you use as a password? Here are a few suggestions:

• Make up a nonsense word.
• Make up an acronym.
• Misspell a word intentionally.
• String .together syllables from a favorite song or poem.

Note HP -UX requires that your password be six to eight characters
long. At least two of these characters must be letters
(uppercase or lowercase); at least one character must be either
a numeral (the digits 0 through 9) or a special character (such
as -, _, or $).

8-4 Keeping Your System Secure

Protecting Your Password

When you have chosen your password, follow these guidelines to ensure that no
one discovers it:

• Never write down your password.

• Don't tell others your password.

• Don't let others watch as you type your password.

• Don't store your password in the function keys of a terminal.

• Change your password occasionally (for example, once every three or four
months). Refer to "Setting Your Password" in Chapter 2 if you need
information on how to change your password.

• If you use more than one computer, use a different password for each system.

Keeping Your System Secure 8-5

Protecting Your Files and Directories

Access permissions determine who can access your files and directories and
the type of access allowed. You should always be aware of the permissions
assigned. Check your files and directory permissions periodically to make
sure appropriate permissions are assigned. If you find any unfamiliar files
in your directories, report them to the system administrator or security
officer.

Always carefully consider the permissions you allow on your files and
directories. Give others access to them only when you have good reason to do
so (if you are working on a group project, for example, your group may need
access to certain files or directories.)

As you learned in Chapters 3 and 4, the basic access permissions assigned to
files and directories distinguish between three classes of users: owner, group,
and other.

Each of the classes of users can access files or directories in any of three ways:
read, write, and execute/search (r, w, and x).

Access to Sensitive Files

Make sure that permissions assigned to sensitive files and directories are
appropriate. Here are some general suggestions:

• Only you should be able to write to your home directory.

• Only you should be able to write to the files used to customize your home
environment, for example, . login and . profile. (These files are discussed
in the section "Invisible File Names" in Chapter 3.)

• Only you should be able to write to your mailfile lusr Imaill username.

8-6 Keeping Your System Secure

Listing Permissions with the II Command

In Chapters 3 and 4, you learned to use the 11 command to see the basic
access permissions assigned to files and directories. This section contains a
brief summary of how the 11 command works.

To see the access permissions, owner name, and group name on myfile, type
the following:

$ 11 myfile

When you press (Return), you should see something like this:

-rw-r--r-- 1 leslie users 154 Nov 4 10:18 myfile

The first dash in the long listing indicates that myfile is a file. (If myfile
were a directory, you would see a d in place of the dash.) The next nine
positions indicate read, write, and execute permissions for owner, group, and
other. If a permission is not allowed, a dash appears in place of the letter.

Here is a closer view with all permissions indicated (note that the permissions
are in "sets" of three):

rwx rwx rwx

owner group other

For More Information ...

For more detail on the 11 command, see the section in Chapter 3 "Finding Out
Who Can Use Your Files" or the section in Chapter 4 "Finding Out Who Can
Use Your Directories" .

Keeping Your System Secure 8-7

Changing Who Has Access to Files

If you want to change the basic access permissions assigned to a file use
the chmod (change mode) command to control who has read, write and
execute permission to your files.

You can change file permissions using the chmod command. The chmod
command sets a file's read, write, and execute permission for you, the file's
group, and other users. Before using this command, you should always
carefully consider what file permissions you give to others.

In general, give others access to your files only when you have good reason to
do so (if you are working in a group project, for example, your group may need
access to certain files).

Using chmod to Set File Permissions

To illustrate the chmod command, you can set myfile's permissions so that
only you can read from and write to the file. The general syntax of chmod is as
follows:

chmod number file- name

Number is a three-digit number specifying how you want to protect the file.
The three digits sequentially set permissions for each of the three groups:
the owner, the group to which the owner belongs, and all other users. The
file_name is the name of the file you want to protect.

For example, to set the access permissions on myfile so that you, your group,
and other users can read myfile, but no one can write to it, enter:

$ chmod 444 myfile

The numerical notation that chmod uses to set permissions is based on octal
values, as follows:

8-8 Keeping Your System Secure

r w x

1 1 1 = permissions allowed (rwx is output)

a a a = permissions denied (--- is output)

The following diagram shows the various combinations of permissions and the
corresponding octal values. These values are used by chmod to change file and
directory permissions.

--x r-- r-x rw- rwx
000 001
a 1

100 101
4 5

110 111
6 7

The next section shows you some examples of frequently used chmod
commands.

Keeping Your System Secure 8-9

Common Ways to Use chmod to Protect Files

The preceding section introduced the chmod command and explained
the syntax used to protect files. This section gives you some examples of
common ways to use chmod.

Table 8-1 shows various chmod commands you can use to protect myfile.

Table 8-1. Common Uses of chmod

To protect myfile so that ... Use ...

Only you can read from myfile, and no one (including $ chmod 400 myfile
you) can write to it. Set permissions to -r--------.

Everyone can read from myfile, but no one can write to $ chmod 444 myfile
it. Set permissions to -r--r--r--.

Only you can write to myfile, but everyone can read it. $ chmod 644 myfile
Set permissions to -rw-r--r--.

Only you and members of your group can read and write $ chmod 664 myfile
to myfile, but everyone can read it. Set permissions to
-rw-rw-r--.

Everyone can read from or write to myfile. Set $ chmod 666 myfile
permissions to -rw-rw-rw-.

Only you can read from or write to myfile, but no one $ chmod 600 myfile
else can. Set permissions to -rw-------

For example, suppose you want to protect myfile so that neither you nor
anyone else can modify it, but everyone can still read from it. Then use chmod
as shown in the second entry in Table 8-1:

$ chmod 444 myfile

Run the 11 command to verify that myfile has read permission only:

$ 11 myfile
-r--r--r-- 1 leslie users 154 Nov 4 10:18 myfile

8-10 Keeping Your System Secure

With only read permission on myfi1e, no one can write to it. Also, if you now
try to remove myfi1e, the rm command asks you whether you really want to
remove the file:

$ rm myfi1e
myfi1e: 444 mode? (yIn) n You do not want to remove it, so enter n.

(If you did want to remove it, you would
enter y.)

Later, if you want to permit yourself and other members of your group to read
from and write to myfi1e, use chmod as follows:

$ chmod 664 myfi1e

The 11 command now should show:

$ 11
-rw-rw-r-- 1 leslie users 154 Nov 4 10:18 myfi1e

For More Information ...

This section covered some of the most common uses of the chmod command for
protecting files. To learn more about chmod, refer to the following books:

• The system administrator's manual for your system .
• The chmod entry in section 1 of the HP-UX Reference.

Keeping Your System Secure 8-11

Changing Who Has Access to Directories

In addition to changing permissions on files, the chmod command can also
change permissions on directories. Using chmod, you can control who has
access to your directories, and what kind of access they have. For example,
you can protect a directory so that no one can list its files. Or you can
control whether users can remove or change files in a particular directory.

Table 8-2 defines some of the more common uses of chmod with directories. All
the examples in this table assume that the directory proj ects exists under
your current working directory.

Table 8-2. Setting Directory Protection for the projects Directory

To Set Permissions to ... Use this command

Allow other users to list and access the files in $ chmod 755 pro j ects
pro j ects, but not to create or remove files from it.
Set permissions to drwxr-xr-x.

Allow all users to list, create, remove, and access files $ chmod 777 projects
in pro j ects. Set permissions to drwxrwxrwx.

Allow only yourself to list, create, remove, and access $ chmod 700 pro j ects
files in projects. Set permissions to drwx------.

Note When determining who should be allowed to use your
directories, be aware that anyone who can write to a directory
also can remove or rename a file in that directory-even if that
person cannot write to the file.

8-12 Keeping Your System Secure

Finding Out Default Access Permissions

In the preceding section you learned how to change the permissions on
individual files and directories using the chmod command. You should
also be aware of the default permissions assigned to all of your files and
directories at the time you create them. You can list or change these
default settings by using the umask command.

Default file permissions are assigned by the system when you create a new
file or directory. To find out what these permissions are, create a new file or
directory and then use the 11 command to examine the permissions assigned.

You may want to reset the default permissions for your home directory to make
access to your files and directories either more or less restrictive. You can
change how the default file permissions are set using the umask command.

The umask command works in an opposite manner to the chmod command.
Suppose the system default assigned to a new directory is 777 (read, write, and
execute/search). The three digits you specify with the umask command are
subtracted from that number. For example, suppose you enter:

$ umask 022

The new permissions are set to 755. Each of the digits specified with umask
(022) is subtracted from the corresponding default access permissions (777) to
get 755. Therefore, the next time you create a new directory, it is assigned the
permissions 755 (drwxr-xr-x).

To find out what umask has been set on your system, type

$ umask

Here are some examples of common settings for umask:

umask 022

umask 002

Assigns permissions so that only you can read or write to files
or directories that you own. All others have read permission
only to your files.

Assigns permissions so that you and also members of your
group have read and write permission to files and directories
that you own. All others have read permission only.

Keeping Your System Secure 8-13

If you set the umask command at a prompt, it will apply for the current
login session only. To apply a umask to all subsequent files and directories
you create, add the ummask command to your .login file (C-shell users) or
.profile file (Korn and Bourne shell users). For more information on these
files, see A Beginner's Guide to Using Shells.

For More Information ...

To learn more about the umask command refer to the umask entry in section 1
of the HP-UX Reference).

To learn more about the .profile and . login files see A Beginner's Guide to
Using Shells.

To learn more about the 11 command, refer to the HP-UX Reference (you'll
find the 11 command listed under ls in section 1).

8-14 Keeping Your System Secure

9
Other Common HP-UX Tasks

The previous chapters of this guide tell you the basic things you need to know
about HP-UX. In addition, there are many other useful HP-UX commands and
utilities that you may want to use. This chapter tells you about some of these
useful commands.

Specifically this chapter discusses:

• Saving files on tape using cpio and tcio.

• Retrieving files from tape using cpio and tcio.

• Getting print job information or canceling a print job.

• Searching for files using find.

• Searching for text patterns using grep.

• Running commmands automatically at preset times using at and crontab.

• Sorting files using sort.

For more information on any of commands discussed in this chapter see the
appropriate HP- UX Reference entry or the corresponding on-line man-page.

Other Common HP-UX Tasks 9-1

Saving Files on Tape Using cpio and tcio

With the cpio and tcio commands you can save directories and files to
tape. Use these commands when you want to exchange files with other
HP-UX systems via tape or keep your own tape archives, distinct from
system backups.

Overview

Typically, your system administrator will assume responsibility for making
full system backups. He or she will regularly copy files and directories on the
system to tape or another disk, as protection against loss of data. However,
you may also want to place files and directories on tape, either to transfer them
to another system or to make a personal backup tape.

You can use cpio to save files to both cartridge and 9-track magnetic tape.
Whenever you use cpio to save files to cartridge tape, you should use it with
tcio to improve performance and reduce wear on the tape drive.

Note The cpio command will not preserve optional ACL permissions
if they have been assigned to files. For more information on
ACLs see Appendix A.

Here is an overview of the commands used to save files to tape.

find . -print

cpio -ocv

tcio -0

Generates a list of path names of all files and
directories under the current directory; sends the list to
cpio.

Receives a list of path names from the find command;
then generates ASCII-format file information.

Receives file archive information from cpio and stores
it on tape. The tcio command is used only with
cartridge tape.

9-2 Other Common HP-UX Tasks

Creating a Tape Archive

The following steps tell you how to save all files and directories under the
current directory to tape.

Caution Using epio to save files to tape overwrites the tape's previous
contents.

1. Get permission from your system administrator to use the tape drive, and
ask for the tape's device file name.

2. Mount a tape in the tape drive. If you don't know how to mount a tape,
ask your system administrator or see the manual that comes with the tape
drive.

3. ed to the directory containing the files and subdirectories you want saved on
tape.

4. Run one of two commands following, depending on whether you are copying
to cartridge or 9-track magnetic tape. Use the device file name obtained in
step 1:

If you are using a cartridge tape, enter:

$ find . -print I epio -ocv I teio -0 device_file

If you are using a 9-track tape, enter:

$ find . -print I epio -ocv > device_file

Other Common HP-UX Tasks 9-3

Example of Creating a Tape Archive

Assuming that the tape device file for your system is /dev/update. sre, here
is how you would save all the files and subdirectories contained in your home
directory to cartridge tape:

$ cd
cd to your home directory
$ Is *
list its contents to verify that it's O.K.
memos:
report1 e2.beg.gd titles report2 design1

projectX:
plan mail stuff

$ find. -print epio -oev I teio -0 /dev/update.sre
The device file name may vary depending on your system.

If you are copying to 9-track tape, enter:

$ find . -print I epio -oev > /dev/rmt/Om
The device file name may vary depending on your system.

9-4 Other Common HP-UX Tasks

Selectively Saving Files to Tape

You can use the Is command with cpio to save only specified files to tape.

Caution Remember that whenever you write files to tape with cpio you
overwrite the tape's previous contents.

For example, to save files report 1 and report2 in the current directory, enter
the following commands:

To save to cartridge tape, enter:

$ Is report1 report2 I cpio -ocv I tcio -0 device_file

To save to 9-track tape, enter:

$ Is report1 report2 cpio -ocv > device_file

Listing Files on Tape

To examine the files listed on tape, use the t option.

To list files on cartridge tape, enter:

$ tcio -i device_file I cpio -ictv

To list files on 9-track tape, enter:

$ cpio -ictv < device_file

Other Common HP-UX Tasks 9-5

Retrieving Files from Tape Using epio and teio

Use the cpio and tcio commands to retrieve directories and files
previously saved to tape and copy them to your system disk.

Overview

Here is an overview of the commands used:

tcio -i

cpio -icdv

Generates a list of path names of all files and directories on the
tape; sends the list to cpio. The tcio command is only used
with cartridge tape.

cpio receives archive information either from tcio or directly
from the tape and copies files to the system disk. The archive
must have been previously created using cpio with the -0

option.

Retrieving All Files from Tape

1. Get permission from your system administrator to use the tape drive, and
ask for the tape's device file name.

2. Mount a tape in the tape drive. If you don't know how to mount a tape,
ask your system administrator or see the manual that comes with the tape
drive.

3. cd to the directory where you want to copy the files and subdirectories
previously saved on tape.

4. Run either of the following commands depending on whether you are using a
cartridge tape or a 9-track magnetic tape. Use the device file name obtained
in step 1:

If you are using a cartridge tape, enter:

$ tcio -i device_file I cpio -icdv

If you are using a 9-track tape, enter:

$ cpio -icdv < device_file

9-6 Other Common HP-UX Tasks

Note When you are retrieving files from tape, the epio command
will not overwrite files on your disk that have been modified
more recently than the files on tape. If you want to override
this feature and copy over newer files, use epio with the -u
option.

Example of Retrieving Files from Tape

Assuming that the tape device file for your system is /dev/update. sre, here
is how you would copy files and subdirectories contained on cartridge tape to
your home directory:

$ cd cd to your home directory
$ teio -i /dev/update.sre I epio -iedv The device file name may vary

depending on your system.

To copy files from 9-track tape, enter:

$ cd cd to your home directory
$ epio -iedv < /dev/rmt/Om The device file name may vary

depending on your system.

Note The directories you are restoring from tape must already exist
on your system. If they don't, use epio with the -d option (as
shown in the previous examples) and it will create them.

Selectively Retrieving Files from Tape

If you wish, you can retrieve only selected files. For example, to retrieve files
that match the pattern report*, use the following commands:

If you using a cartridge tape, enter:

$ teio -i device_file I epio -iev 'report*'

If you using a 9-track tape, enter:

$ epio -iev 'report*' < device_file

You must enclose the text pattern 'report*' in single quotes.

Other Common HP-UX Tasks 9-7

Table 9-1.
Summary of Common cpio Commands for Cartridge Tape

To do this ... Use this command ...

Save files in the current directory find. -print I epio -oev I teio -0 device_file
and its subdirectories to
cartridge tape.

Selectively save files to cartridge Is file1 file2 I epio -oev I teio -0 device_file
tape.

List files on cartridge tape. teio -i device_file I epio -ietv

Retrieve files from cartridge teio -i deviccfile I epio -iedv
tape.

Selectively retrieve files from
cartridge tape.

teio -i device_file I epio -iev filel file2

Table 9-2.
Summary of Common cpio Commands for 9-track Magnetic Tape

To do this ... Use this command ...

Save files in the current directory find. -print I epio -oev > device_file
and its subdirectories to 9-track
tape.

Selectively save files to 9-track Is file1 file2 I epio -oev > device_file
tape.

List files on 9-track tape. epio -ietv < device_file

Retrieve files from 9-track tape. epio -iedv < device_file

Selectively retrieve files from epio -iev filel file2 < device_file
9-track tape.

9-8 Other Common HP-UX Tasks

Getting Information About Print Jobs

After you send a file to the printer, you may want to find out the status of
your print request or cancel it. This section tells you how to manage your
print jobs.

Overview

Many people can send a printing job to the printer at one time. To make
sure that the print requests don't interfere with each other, the print spooler
handles the requests and makes sure they print one at a time. Each print
request is given a identification number. The jobs are printed one at a time, in
the order in which they are requested.

Sending Files to the Printer

You can print a file using the lp (line print) command.

$ 1 P file- name
request id is pr1-5453 (1 file)
$

The lp command sends the file to the spooler, which stores the file until its
turn to be printed. The request id consists of two parts: the printer name and
the print request number. In this example, the name of the default printer is
pr1; the print request number is 6.

The printing process takes place in the background, so after you enter the 1 p
command, the shell prompt returns and you can enter another command.

You can send more than one file to the printer at a time. For example, suppose
you want to send multiple files to the printer. Assuming the files are called
report1, report2, and report3, enter:

$ lp report1 report2 report3

Other Common HP-UX Tasks 9-9

You can also use a filename pattern and enter:

$ lp report*

The files are sent sequentially to the printer.

Sending Files to an Alternate Printer

Your system may be connected to more than one printer. If you want to print
to a printer other than the default printer, use lp with the -d option. For
example, enter:

$ 1 P -dpr2 file- name

This example sends file_name to the printer called pr2. To find out the names
of the printers connected to your system, ask your system administrator.

Finding Out the Status of Your Print Request

After you make a printing request, you may want to find out its status. Use
the lpstat command to get information about the spooler. For example, enter:

$ lpstat
market: ready and waiting
pr1-5453 leslie 2034 Jul 18 17:26

The example shows that job #5453 is waiting to be printed from the market
system on printer pr 1.

To find out the position of your job in the printer queue use lpstat with the
-t option. Enter:

$ lpstat -t

9-10 Other Common HP-UX Tasks

You'll see a display showing you information about the available printers on
the system. At the end of the display, the jobs in the queue are listed for the
different printers.

$ lpstat -t
scheduler is running
system default destination is prl
device for prl is /dev/null
device for pr2 is /dev/ttyOp4
prl accepting requests since April 10 2:14
pr2 accepting requests since July 12 3:45
printer prl is now printing
printer pr2 is now printing

printer queue for prl: ready and waiting
prl-5450 scott 14379 Jul 18 17:15
prl-5451 joanne 16786 Jul 18 17:21
prl-5453 leslie 2034 Jul 18 17:26

printer queue for pr2: ready and waiting
prl-5452 michael 1098546 Jul 18 16:59

on prl
on prl
on prl

on pr2

Notice that Leslie's job is scheduled on prl behind jobs for Joanne and Scott.

Canceling a Print Job

To cancel a print job, enter:

$ cancel requesLid

where requesLid is the job number of your print request.

For example, if Leslie wanted to cancel her print request, she would enter:

$ cancel prl-5453

Other Common HP-UX Tasks 9-11

Searching for Files using find

You can use the find command to search through a directory and its
subdirectories for files meeting certain criteria. You can then execute a
command on the files you've found. To display the output of find on the
screen, you must use the -print option.

Finding Files that Match a Pattern

Suppose you want to display all files in the current directory and its
subdirectories that begin with d. Enter:

$ find. -name 'd*' -print

The dot (.) causes find to search the current directory and its subdirectories.
The -name option followed by a filename or a filename pattern (in this case d*)
tells find to search for all filenames that begin with d.

Note that d* is enclosed by single quotes 'd*'. If you use a file name pattern
in the find command, you must quote it so that the shell will interpret it
correctly. The -print option displays the output on the screen.

Finding Files Newer than a Certain File

Suppose you want to display all files modified after a certain file. To display all
files newer than myfile in the /user/leslie directory and its subdirectories,
enter:

$ find /user/leslie -newer myfile -print

This example can be read as follows: find in directory /user/leslie and its
subdirectories all files modified after myfile and display the output on the
screen. (To find out the date and time a file was last modified use the 11
command.)

9-12 Other Common HP-UX Tasks

Running Commands on Files

You can execute commands on files located with the find command. Let's say
you want to remove all files with a . tmp extension in the current directory and
its subdirectories. Enter:

$ find. -name '*.tmp' -print -exec rm {} \;

This example finds and displays on the screen all files in the current directory
and its subdirectories that end in . tmp, then deletes these files. The -exec
option causes the following, command (rm) to be executed. The brackets { }
represent the files found with the find command. The semi-colon that ends
the command string is escaped with a backslash (\i).

Other Common HP-UX Tasks 9-13

Searching for Text Patterns Using grep

You can use the grep command to search for a text pattern within a file
or to display the names of files that contain a specified text pattern. This
command is useful when you want to search for information in files or
directories.

Overview

The grep command looks at each line of one or more files for a text string that
matches a specified pattern. When it finds a matching text string, it displays
the line in which the matching string is found.

Searching a File for a Text String

Suppose you have a mailing list called mailist with the contents shown below:

Smith, Joe
Walsen, Stacy
Diaz, Robert
Wang, Michael

2345 Pine St. Santa Clara, CA
493 Winkle Ave. San Jose, CA
6789 Pine St. Santa Clara, CA
1832 Jackson St. Santa Clara, CA

If you want to extract the addresses of all the people on Pine St. Enter:

$ grep Pine mailist

The grep command lists all lines in mailist that contain the string Pine. The
output is:

Smith, Joe
Diaz, Robert

2345 Pine St.
6789 Pine St.

9-14 Other Common HP-UX Tasks

Santa Clara, CA
Santa Clara, CA

Searching Multiple Files

The grep command can be useful in other ways. Sometimes, you want to find
information, but you don't know or can't remember in which file it's located.

Suppose you have three mailing lists, and can't remember which contains
Stacey Walsen's address, enter:

$ grep 'Walsen, Stacey' mailist mailist2 mailist3
mailist: Walsen. Stacy 493 Winkle Ave. San Jose. CA

The grep command displays the line containing Stacey's address and the file
in which it was found. Note that because it contains a space, the string must
be surrounded by single quotes (' Stacey, Walsen'). If grep had found other
instances of the specified text string, it would list each instance that it found.

Other Common HP-UX Tasks 9-15

Running Commands at Preset Times using at and crontab

The at and crontab commands are useful if you want to run
resource-intensive commands when demands on the system are low or
routinely run commands at certain times. For example, you can schedule a
long file to print at midnight, or arrange that temporary files in your home
directory be erased every day.

Overview

Here is an overview of the commands.

at

crontab

Prerequisites

runs commands in your home directory at the time you specify.

runs commands in your home directory at regularly specified
intervals.

Before you can use crontab or at, your system administrator must set up
certain files that allow you permission to run these commands. These files are
located in the directory /usr/lib/cron.

Two files called at. allow and at. deny in /usr /li b/ cron determine whether
you can use the at command. You are permitted to use at if your username
appears in the file at. allow. If that file does not exist, the system checks
at. deny to determine if you are listed there and should be denied access to at.

If neither file exists, only someone with system administrator privileges is
allowed to use at. If only at. deny exists and is empty, all users are allowed to
use at.

Permission to use the crontab command is determined the same way, except
the files are called cron. allow and cron. deny.

For more information see the entries at and crontab in section 1 of the HP- UX
Reference.

9-16 Other Common HP-UX Tasks

Running Commands at a Specified Time using at

Suppose you have a large file that you want to print, but you don't want to tie
up system resources during the day to do it. Use the at command to print the
file at 4:00 AM.

$ at 4am Enter the at command
Ip big_file
(CTRL)-@)

Enter the command you want to execute
To end the command, press (CTRL)-@)

You can specify a date as well as a time. For example, if you want to print a
file on January 10th at 3:30AM, enter:

$ at 3:30am Jan 10
Ip bigfile
(CTRL)-@)

Note Any output or error messages generated from using the at
command are sent to you in a mail message, unless you redirect
them to a file.

Listing the at Command

To list a job scheduled with at, enter:

$ at -1
job 617 at wed jan 10 03:30:00 1990

The number of the job and the time it's scheduled to be executed are
displayed.

Removing the at Command

To remove a job scheduled with at use the -r option and specify the job
number. For example, to cancel the job shown in the preceding example, enter:

$ at -r 617

Other Common HP-UX Tasks 9-17

Running Commands at Regular Intervals using crontab

You can use the crontab command to run commands at regular intervals. For
example, you might want a reminder about a weekly meeting to appear in your
mailbox, or to erase all files with a . tmp extension from your home directory
every day.

The crontab command creates a file called by your username in the directory
/usr / spool/ cron/ crontabs. (The username is the name you use to login.)
The commands in the file are executed at the specified intervals. The crontab
command file runs in your home directory. Any output or error messages from
executed commands are sent to you in a mail message, unless you redirect them
to a file.

A crontab file contains lines divided into six fields each. The fields are
separated by spaces or tabs. The first five fields represent the time the
command will be run.

minute (0-59)
hour (0-23)
date of the month (1-31)
month of the year (1-12)
day of the week (0-6 with O=Sunday)

The sixth field is a string that is executed at the appropriate time.

Using crontab to Create a Command File

To create a crontab command file (overwriting any previously created file),
enter:

$ crontab

Type the commands you want and then press (CTRL }-@). For example,

30 8 * * 4
o 0 * * *
(CTRL I-@)

echo "Staff meeting today at 10:00AM"
rm *.tmp 2> errfile

9-18 Other Common HP-UX Tasks

The crontab file is interpreted as follows:

• Line 1 - On Thursday at 8:30AM crontab sends you a reminder of your
10:00AM staff meeting. The first field (30) indicates 30 minutes past the
hour. The second field (8) indicates the hour. The third and fourth fields
contain asterisks (*), which indicate all legal values. The fifth field (4)
indicates Thursday.

The crontab command sends output and error messages to your mailbox
(unless you redirect them to a file). Every Thursday morning at 8:30AM you
will receive a mail message:

Staff meeting today at 10:00AM

Cron: The previous message is the standard output
and standard error of one of your cron commands.

• Line 2 - At midnight every day crontab erases files with a *. tmp extension
in your home directory. Any error messages are redirected to errfi1e in
your home directory. Note: If the crontab file runs in a C Shell you redirect
output and error messages using >& outfi1e.

Listing the crontab File

You can get a listing of the contents of your crontab file by entering:

$ crontab -1
30 8 * * 4

o 0 * * *
echo "Staff meeting today at 10:00AM"
rm *.tmp 2> errfi1e

Removing a crontab File

You can remove your crontab file by entering:

$ crontab -r

Your crontab file is removed from the directory /usr/spoo1/cron/crontabs.

Other Common HP-UX Tasks 9-19

Using sort to order files

You can use the sort command to order the contents of files. You can sort
alphabetically, numerically, or by different fields.

Overview

The sort command sorts a file on a line-by-line basis. It compares the
first characters in each line; if they are the same, it compares the next two
characters, and so on through the end of each line.

The sort command also recognizes different sortable fields. Fields are
separated from each other by spaces or tabs. If there is more than one leading
space before a field, sort will count each space as a sortable character.

Sort Files in Alphabetical Order

Here is an example file called list, containing the names and telephones
numbers of the members of a tennis club and the number of tickets they have
sold for a benefit match. Each line in the file has four fields: the first name,
the last name, the number of tickets sold, and the phone number. The fields
are separated by spaces.

If you want to practice using the sort command, type in the list file using
the c at command as shown following:

$ cat > list
Nancy Smith
Jeff Bettleman
Jeff Plimpton
Joyce Smith

To sort the file, enter:

$ sort list
Jeff Bettleman
Jeff Plimpton
Joyce Smith
Nancy Smith

4
8
13
6

8
13
6
4

245-1342
438-7689
729-8965
467-2345

438-7689
729-8965
245-1342
467-2345

9-20 Other Common HP-UX Tasks

Note that the list is sorted alphabetically by first names. The sort command
without any options will sort starting with the first field in each line (in this
example the first name).

The sort command places the two "Jeffs" in the correct order, because after
comparing the first names and finding them identical, it compares the second
fields (last names).

Sorting Files by Different Fields'

The next example shows how you can use sort to order the list by last names.

$ sort +1 list
Jeff Bettleman 8 438-7689
Jeff Plimpton 13 729-8965
Nancy Smith 4 467-2345
Joyce Smith 6 245-1342

The +1 option causes sort to skip the first field of each line and start sorting
at the second field (the last names). However, note that the first names Nancy
and Joyce are not in alphabetical order.

The next example shows how to sort by last name and then by first name.

$ sort +1 -2 +0 list
Jeff Bettleman 8 438-7689
Jeff Plimpton 13 729-8965
Joyce Smith 6 245-1342
Nancy Smith 4 467-2345

The +1 causes sort to skip the first field (first name) and sort by the second
field (last name). The -2 causes the sort command to stop after comparing
the second fields. If any of the second fields are identical (in this case the
Smiths), the +0 instructs sort to make a second pass and sort from the
beginning of the line (putting the first names in correct order).

Note that the sort command will only make a second pass at comparing lines
if its first pass shows all of the examined fields in the lines to be identical. If
-2 were not specified in the above example, sort would show the third fields
(telephone numbers) to differ and would never make a second pass to compare
the first names.

Other Common HP-UX Tasks 9-21

Sorting in Numerical Order

Suppose you want to sort the file by the number of tickets sold. Enter:

$ sort -rnb +2
Jeff Plimpton
Jeff Bettleman
Joyce Smith
Nancy Smith

-3 list
13 729-8965
8 438-7689
6 245-1342
4 467-2345

There are a couple of things to keep in mind when sorting in numerical order.
First, sort will consider multiple leading blanks in its comparison. Since there
are a variable numbers of blanks preceding the third field (ticket number), your
results will be incorrect unless you use the -b (ignore leading blanks) option.

Also, the numbers will not be in the right order unless you use the -n
(numeric) and -r (reverse) options. The sort command by default sorts from
least to greatest numbers so you need the -r option to list the greatest number
first. Also, by default sort works by comparing characters in a field in the
order they appear. So without the -n option, 8 would come before 13, because
8 is larger than 1.

9-22 Other Common HP-UX Tasks

Table 9-3. Summary of Common sort Options

This option Does this ...

-b (disregard leading blanks) Blanks, which can be either spaces or tabs,
delimit sortable fields. Without the -b option, sort considers all blanks
preceding a field to be part of that field, and will use them in sort
comparisons.

-d (dictionary) disregards all characters that are not alphanumeric or
blanks. In particular, this option disregards control characters or
punctuation.

-f (fold) doesn't consider any difference between upper and lower case.

-n (numerical) sorts in numerical order. Plus and minus signs are
considered as plus and minus signs, and dots (.) are considered as
decimal points.

-r (reverse) reverses sort order (Le., z-a).

-u (unique) removes duplicate lines from a sorted file.

Other Common .HP-UX Tasks 9-23

A
Access Control Lists (ACLs)

If you are working in an environment where security is especially important,
you may want to restrict access to files selectively. You can specifically control
who has access to files and directories by assigning optional access control list
(ACL) permissions.

Caution Do not use ACLs until you have checked with your system
administrator.

For the purpose of selectively restricting access to files with ACLs, users can be
classified into:

• individual users-any individual user on the system

• specific groups-groups other than the owner's group.

For example, you may want to assign ACL permissions to restrict access to
a sensitive file so that only you and your manager can read it. You also may
want to restrict access to a sensitive directory so that only certain members of
a group can write to it.

Access Control Lists (ACLs) A-1

Listing Permissions for Specific Users and Groups.

In the previous sections of this guide, you learned how to use the 11 and
chmod commands to control which classes of users have access to your files
and directories. Optional Access control lists (ACLs) let you control access
rights for specific lists of users or groups.

Using the II command

The 11 command indicates whether ACLs have been assigned to a file or
directory. If you see a plus sign (+) at the end of the listing (for example,
-rw-r--r--+), it means that access control list (ACL) entries have been
assigned. To find out specific information on ACLs, use the lsac1 command.

Using the Isacl Command

To see exactly who can access certain files and directories and what
permissions are allowed, use the lsac1 command. The general form of the
lsac1 command is as follows:

$ lsac1 file_name

The system will respond with a listing in this general form:

(user.group,mode) ... file_name

where (user.group,mode) is an ACL entry (there will always be at least three
ACL entries), and file_name is the name of the file or directory for which you
want a listing. The following table describes what each element of an ACL
entry means:

A-2 Access Control Lists (ACLs)

This element ... Means .. .

user The user's login name; a percent sign (%) in this position means
all users.

group The user's group; a percent sign (%) in this position means all
groups.

mode The permissions allowed: read (r), write (w), execute/search
(x). A dash (-) means a permission is denied (for example,
rw- means that read and write permissions are allowed, but
execute/search permission is denied).

An Example Using the Isacl Command

Suppose you run the lsacl command on myfile:'

$ lsacl myfile
(sally.adm,rw-) (leslie.%,r--) (%.mtg,r--) (%.%,---) myfile

Interpret the above listing as follows:

(sally.adm.rw-)

(leslie.%.r--)

(%.mtg.r--)

(%.%,---)

The user sally while in the group adm has read and write
permissions (rw-) on myfile.

The user leslie while in any group (%) has read permission
(r--) on myfile.

Any user (%) in the group mtg has read permission (r--) on
myfile.

No other user (%) from any other group (%) has read, write, or
execute permissions (---) on myfile.

The following section explains how you can change the permissions on ACLs.

Access Control Lists (ACLs) A-3

Changing Permissions for Specific Users and Groups

In the previous sections of this guide, you learned how to use the chmod
command to change general permissions on your files and directories. By
adding entries to optional access control lists (ACLs), you can allow or
deny file and directory access to particular users or groups of users. Set
and change ACLs with the chacl (change acl) command.

Before using the chacl command, always carefully consider the permissions
you allow on your files and directories. Give others access to your files only
when you have good reason to do so (if you are working on a group project, for
example, your group may need access to certain files).

How the chmod and chacl Commands Interact

Since you can use both the chmod and the chacl commands to change access
permissions, you need to be aware of how the two commands interact .

• The chacl command is a superset of the chmod command. Any specific
permissions you assign with the chacl command are added to the more
general permissions assigned with the chmod command.

For example, suppose you use the chmod command to allow only yourself
write permission to myfile. You can use the chacl command to also allow
your manager write permission to myfile. Users other than yourself and
your manager will still be denied write permission as previously specified by
the chmod command .

• If you use chmod after assigning additional permissions with chacl, the
additional permissions are deleted unless you use the -A option of chmod. For
example, to keep any existing ACL permissions on the file myfile, enter

chmod -A number myfile

A-4 Access Control Lists (ACLs)

Using the chacl Command

The general form for the chacl command is as follows:

$ chacl 'user. group operator mode' file- name

user

group

operator

mode

file_name

Indicates the user's login name; a percent sign (%) in this
position means all users.

Indicates the user's group; a percent sign (%) in this position
means all groups.

Indicates whether you are adding or denying permissions to
existing ACL entries or whether you are adding new ACL
entries. A plus sign (+) adds permissions; a minus sign (-)
denies permissions; and equals sign (=) means "this permission
exactly," and usually is used when adding new ACL entries.

Indicates the permissions allowed. Possible modes are read
(r), write (w), and execute/search (x). An operator (explained
above) immediately precedes the mode (for example, +rw
adds read and write permissions; -rw denies read and write
permissions) .

Indicates the name of the file or directory for which you want
to specify access.

Examples Using the chacl Command

Suppose your user name is leslie, and you are in the group users. If you
need to limit access to myfile so anyone in your group can read the file, but
only you and your manager (arni e) can both read from and write to the file,
you might follow these steps:

1. First, use the chmod command to protect myfile so your group can read it,
but only you can both read from and write to the file. (Remember: If you
have any previously set ACL entries, chmod deletes them unless you use the
-A option):

$ chmod -A 640 myfile

Access Control Lists (ACLs) A-S

2. To view the permissions you just set, run the 11 command on myfile:

$ 11 myfile
-rw-r----- 1 leslie users 236 Dec 8 14:04 myfile

The 11 command shows that owner (leslie) has read and write permission
on myfile; group (users) has only read permission; other has no access to
the file.

3. Now use the Isacl command to compare the long listing above with the
ACL entries:

$ Isacl myfile
(leslie.%.rw-)(%.users.r--)(%.%.---) myfile

The Isacl command shows that leslie in any group (%) has read and
write permission to myfile; anyone (%) in the group users has read
permission to myfile; and everyone else has no access to myfile.

4. To specify that your manager, who is in a different group (mtg), should have
read and write access to myfile, use the chacl command to create a new
ACL entry for myfile:

$ chacl 'arnie.mtg=rw' myfile

5. Now run the 11 command on myfile:

$ 11 myfile
-rw-r-----+ 1 leslie users 236 Dec 8 14:04 myfile

The plus sign (+) at the end of the permissions string means that additional
permissions (in the form of optional ACL entries) exist for myfile.

6. Run the Isacl command to view these optional ACL entries:

$ Isacl myfile
(arnie.mtg,rw-)(leslie.%,rw-)(%.users,r--)(%.%,---) myfile

The Isacl command now shows that, in addition to the previous ACL
entries, arnie of the group mtg has read and write permission to myfile.

A-6 Access Control Lists.(ACLs)

The table below further illustrates ways you can use the chacl command:

If you want to ... Use this command ...

Create a new ACL entry allowing the user eye in any $ chacl 'cyc.%=rw' myfile
group (%) read and write (=rw) access to myfile.

Modify an existing ACL entry allowing all users (%) in $ chacl '%.%+r' foofile
all groups (%) read (+r) access to foofile.

Modify an existing ACL entry denying all users (%) in $ chacl '%.adm-w' afile
the adm group write (-w) access to afile.

Create a new ACL entry denying the user j on in the $ chacl 'jon.mkt=' olddir
mkt group read, write, or execute/search access to the
oldir directory.

For More Information ...

To learn more about security in general, see the HP-UX Security Manual.

To learn more about using the lsacl command, see the lsad entry in section 1
of the HP- UX Reference.

To learn more about using the chacl command, see the chacl entry in section
1 of the HP- UX Reference.

For additional information on ACLs, see the acl entry in section 5 of the
HP- UX Reference.

Access Control Lists (ACLs) A-7

Index

A
A Beginner's Guide to Text Editing, 1-3
A Beginner's Guide to Using Shells 1-3 , ,

2-5, 6-3
absolute path names, 4-6
access control lists (ACLs), A-1-7
accessing directories, 4-20, 8-7
accessing files, 3-10, 8-7
alphabetizing using sort, 9-20
appending to a file, 6-7
archiving

files to tape using cpio, 9-2
retrieving files from tape using cpio, 9-

6
arguments, command, 5-2
at command, 9-16
auditing, 8-3

B
backing up

files to tape using cpio, 9-2
retrieving files from tape using cpio, 9-

6
Bourne shell, 2-5, 3-5, 6-12
(Break), 2-2

c
cal command, 2-5
canceling a print job, 9-11
cat command, 3-2, 6-6-8, 6-10, 6-17
chacl command, A-4
changing access to files, 8-8

changing who has access to directories 8-,
12

changing your mailbox, 7-12
changing your password, 2-6
child directory, 4-2
chmod command, 8-8, 8-12, A-5
clear command, 8-2
command line, 6-16
command line prompt, 2-3
commands

arguments, 5-2
at, 9-16
cal, 2-5
cat, 3-2, 6-6-8, 6-10, 6-17
chacl, A-4
chmod, 8-8, 8-12, A-5
clear, 8-2
concepts, 5-1
cp, 3-8-9, 4-14-15, 4-19
cpio, 9-2, 9-6
crontab, 9-16
date, 2-5, 6-7
elm, 7-1, 7-16
exit, 2-8
find, 9-12
hostname, 7-8
11,3-10,4-20,4-22, 8-7, A-6
11 -d, 4-22
lp, 3-7, 9-9
lpstat, 9-10
Is, 3-3, 3-5
Is -a, 3-5

Index-1

Isael, A-2, A-6
Isf, 4-10
man, 5-4
mkdir, 4-10
more, 3-6
mv, 3-8,4-14-15,4-19
options, 5-2
passwd, 2-6
pwd, 4-6
rm,3-8
rmdir, 4-16
running at regular intervals, 9-16
running several commands on the same

command line, 5-3
sort, 6-10, 9-20
syntax, 5-2
teio, 9-2, 9-6
tee, 6-17
typing, 2-4
umask, 8-13
we, 6-8, 6-16
who, 6-6, 6-8, 6-16
whoami, 2-4, 6-5

conventions, typograpical, 1-3
copying a file, 3-8
correcting typing mistakes with (Back space),

2-4
ep command, 3-8-9, 4-14-15, 4-19
epio command, 9-2, 9-6
creating directories with mkdir, 4-10
erontab command, 9-16
C shell, 2-5, 3-5, 6-14
(CTRL HIl, 2-8
(CTRL l-@), 2-8, 3-2
current message, 7-6
current working directory, 4-4

D
date command, 2-5,6-7
deleting a directory with rmdir, 4-16
deleting a file with rm, 3-8

Index-2

deleting mail messages, 7-10
directories

E

accessing, 4-20
changing access to, A-4
changing who has access to, 8-12
changing with cd, 4-12
concepts, 4-2
creating with mkdir, 4-10
current working, 4-4
execute/search permission, 4-21
finding out who has access to, 4-20
hierarchy, 4-2
home directory, 4-4
listing with Isf, 4-10
moving and copying files with mv and

ep,4-14
organizing your files, 4-1
path names, 4-6
permissions, 4-21, 8-6
protecting with ehmod, 8-12
pyramid analogy, 4-2
read permission, 4-21
removing with rmdir, 4-16
root (I), 4-2, 4-4
search permission, 4-21
security, 4-21, 8-6, 8-12
wildcard characters in directory names,

4-18
write permission, 4-21

electronic mail, see also mail, 7-1
elm command, see also mail, 7-1
. environ, 3-5
execute permission for files, 3-10, 8-6
execute/search permission for directories,

4-21, 8-6
exi t command, 2-8

F
file descriptor, 6-12

files
accessing, 3-10
changing access to, 8-8, A-4
concepts, 3-1
copying between directories, 3-8, 4-14
copying with cp, 3-9
creating with cat, 3-2
invisible file names, 3-5
listing, 3-3
listing ACL permissions with Isacl, A-

2
moving between directories, 4-14
naming, 3-4
organizing in directories, 4-1
permissions, 3-10, 8-6, 8-8
printing, 3-7
protecting with chmod, 8-8
removing with rm, 3-8
renaming with mY, 3-8
security, 8-6
viewing contents of, 3-6
wildcard characters (?, *) in file names,

4-18
filter programs, 6-18
find command, 9-12
Finding HP- UX Information, 1-3

H
help, on-line, 5-4
hierarchical file system, 4-1
home directory, 4-4
hostname command, 7-8
HP- UX Reference, 5-4

invisible file names, 3-5

K
Korn shell, 2-5, 3-5, 6-12

L
listing ACL permissions with Isacl, A-2
listing file permissions with 11, 3-10, 8-7
listing files with Is, 3-3
11 command, 3-10,4-20, 4-22, 8-7, A-6
logging in, 2-2
logging out, 2-8
. login, 3-5
login prompt, 2-2
looking at a file's contents with more, 3-6
Ip command, 3-7, 9-9
Ipstat command, 9-10
Isacl command, A-2, A-6
Is -a command, 3-5
Is command, 3-3, 3-5
Isf command, 4-10

M
mail

addresses, 7-9
command summary, 7-16
concepts, 7-1
current message, 7-6
> (current message pointer), 7-6
deleting messages, 7-10
help command, 7-16
reading, 7-6
saving to a file, 7-12
sending to users on other systems, 7-8
sending to users on your system, 7-4

mailbox, 7-12
making a copy of a file with cp, 3-9
man command, 5-4
man-pages, accessing with the man com-

mand, 5-4
mkdir command, 4-10
more command, 3-6
mv command, 3-8, 4-14-15, 4-19
myfile, creating, 3-2

Index-3

N
naming files, 3-4
nodename, 7-8

o
on-line HP- UX Reference entries, 5-4
options, command, 5-2
organizing files in directories, 4-1

P
PAM (Personal Applications Manager),

2-3, 2-5, 3-5
PAM shell, 1-4
parent directory, 4-2
passwd command, 2-6
password, 2-1

protecting , 8-4
rules for choosing a new, 2-6, 8-4
security, 8-4
setting or changing your, 2-6

password, rules for choosing a new, 2-6
path names, 4-6
permissions, 3-10, 4-21, 8-6, 8-8, A-3

directories, 4-20, 8-6
files, 8-6
listing file permissions with 11 3-10 8-, ,

7
listing with 11, A-6
listing with lsacl, A-6
setting default permissions with umask

8-13
pipe, 6-16
pipeline, 6-16
printing, 9-9

a file's contents with Ip, 3-7
canceling a print job, 9-11

,

finding the status of a print job, 9-10
sending files to an alternate printer, 9-

10
process

definition, 6-2

Index-4

process identifier (PID), 6-2
. profile, 3-5
program, 6-2
prompt, command, 2-3
protecting directories with chmod, 8-12
protecting directories with umask, 8-13
protecting files with chmod, 8-8
protecting files with umask, 8-13
protecting your files and directories, 8-6
protecting your password, 8-4
pwd command, 4-6
pyramid analogy with directories, 4-2

R
reading mail, 7-6
read permission for directories, 4-21, 8-6
read permission for files, 3-10, 8-6, 8-8
redirection

appending output, 6-7
standard error, 6-12
standard input, 6-8, 6-10, 6-16
standard output, 6-6, 6-10, 6-14, 6-16

relative path names, 4-8
removing a file with rm, 3-8
removing directories with rmdir, 4-16
renaming a file with mv, 3-8
retrieving files from tape, 9-6
rm command, 3-8
rmdir command, 4-16
root directory (I), 4-2, 4-4
running commands, 2-4
running multiple commands on the same

command line, 5-3

s
saving mail to a file, 7-12
searching for files using find, 9-12
search permission for directories, 4-21
securing your terminal, 8-2
security

directories, 4-20-21, 8-6, 8-12

files, 3-10, 8-6, 8-8
keeping your terminal secure, 8-2
password, 2-6, 8-4
system, 4-20, 8-1-14

sending mail, 7-4, 7-8
setting your password, 2-6
shell, 2-5

differences in redirecting error, 6-14
single-quoting arguments, 5-3
single-user system, 1-2
sort command, 6-10, 9-20
standard error (stderr), 6-4, 6-12
standard input (stdin), 6-4, 6-8, 6-10, 6-

16
standard output (stdout), 6-4, 6-6, 6-10,

6-14,6-16
system administrator, 1-2
system manager, 1-2
system operator, 1-2
system security, 2-6,4-20,8-1-14

T
teio command, 9-2, 9-6
tee command, 6-17

TERM = (hp) , 2-2
terminal type, 2-3
term-type, 2-3
typing commands, 2-4
typing mistakes ((Back space I), 2-4

u
umask command, 8-13
username, 2-1-2, 6-5

V
viewing a file's contents with more, 3-6

w
we command, 6-8, 6-16
whoami command, 2-4, 6-5
who command, 6-6, 6-8, 6-16
wildcard characters (?, *), 4-18
write permission for directories, 4-21, 8-6
write permission for files, 3-10, 8-6, 8-8
writing standard error, 6-12
writing standard input, 6-8, 6-10
writing standard output, 6-6, 6-10

Index-5

SYNTAX FOR REDIRECTION AND PIPES

To Do This ... Use This Command ...

Read standard input from an existing file. command < infile

Write standard output to a file. command> outfile

Append standard output to a file. command» outfile

Write standard output and standard error to command> outfile 2> errfile
different files in the Bourne and Korn Shells.

Write standard output and standard error to (command> outfile) >& errfile
different files in the C Shell.

Send the output of one command as input to commandl I command2
another command using a pipe.

HP Part Number
98594-90006
Microfiche No. 98594-99006
Printed in U.S.A. E0989

rliOW HEWLETT
~J:. PACKARD

98594-90609
For Internal Use Only

